Caroline. Then the more distant planets, move much slower in their orbits; for their projectile force must be proportioned to that of attraction? But I do not see how this accounts for the motion of the secondary, round the primary planets, in preference to moving round the sun?

Emily. Is it not because the vicinity of the primary planets, renders their attraction stronger than that of the sun?

Mrs. B. Exactly so. But since the attraction between bodies is mutual, the primary planets are also attracted by the satellites which revolve round them. The moon attracts the earth, as well as the earth the moon; but as the latter is the smaller body, her attraction is proportionally less; therefore, neither the earth revolves round the moon, nor the moon round the earth; but they both revolve round a point, which is their common centre of gravity, and which is as much nearer to the earth than to the moon, as the gravity of the former exceeds that of the latter.

Emily. Yes, I recollect your saying, that if two bodies were fastened together by a wire or bar, their common centre of gravity would be in the middle of the bar, provided the bodies were of equal weight; and if they differed in weight, it would be nearer the larger body. If then, the earth and moon had no projectile force which prevented their mutual attraction from bringing them together, they would meet at their common centre of gravity.

Caroline. The earth then has a great variety of motion, it revolves round the sun, round its own axis, and round the point towards which the moon attracts it.

Mrs. B. Just so; and this is the case with every planet which is attended by satellites. The complicated effect of this variety of motions, produces certain irregularities, which, however, it is not necessary to notice at present, excepting to observe that they eventually correct each other, so that no permanent derangement exists.

The planets act on the sun, in the same manner as they are themselves acted on by their satellites; for attraction, you must remember, is always mutual; but the gravity of the planets (even when taken collectively) is so trifling compared with that of the sun, that were they all placed on the same side of that luminary, they would not cause him to move so much as one-half of his diameter towards them, and the common centre of gravity, would still remain within the body of the sun. The planets do not, therefore, revolve round the centre of the sun, but round a point at a small distance from its centre, about which the sun also revolves.

Emily. I thought the sun had no motion?

Mrs. B. You were mistaken; for besides that round the common centre of gravity, which I have just mentioned, which is indeed very inconsiderable, he revolves on his axis in about 25 days; this motion is ascertained by observing certain spots which disappear, and reappear regularly at stated times.