Emily. And I have often observed that after a shower, the water collects into large drops on the leaves of plants; but I cannot say that I perfectly understand how the attraction of cohesion produces this effect.
Mrs. B. Rain, when it first leaves the clouds, is not in the form of drops, but in that of mist or vapour, which is composed of very small watery particles; these in their descent mutually attract each other, and those that are sufficiently near in consequence unite and form a drop, and thus the mist is transformed into a shower. The dew also was originally in a state of vapour, but is, by the mutual attraction of the particles, formed into small globules on the blades of grass: in a similar manner the rain upon the leaf collects into large drops, which when they become too heavy for the leaf to support, fall to the ground.
Emily. All this is wonderfully curious! I am almost bewildered with surprise and admiration at the number of new ideas I have already acquired.
Mrs. B. Every step that you advance in the pursuit of natural science, will fill your mind with admiration and gratitude towards its Divine Author. In the study of natural philosophy, we must consider ourselves as reading the book of nature, in which the bountiful goodness and wisdom of God are revealed to all mankind; no study can tend more to purify the heart, and raise it to a religious contemplation of the Divine perfections.
There is another curious effect of the attraction of cohesion which I must point out to you; this is called capillary attraction. It enables liquids to rise above their ordinary level in capillary tubes: these are tubes, the bores of which are so extremely small that liquids ascend within them, from the cohesive attraction between the particles of the liquid and the interior surface of the tube. Do you perceive the water rising in this small glass tube, above its level in the goblet of water, into which I have put one end of it?
Emily. Oh yes; I see it slowly creeping up the tube, but now it is stationary: will it rise no higher?
Mrs. B. No; because the cohesive attraction between the water and the internal surface of the tube is now balanced by the weight of the water within it; if the bore of the tube were narrower the water would rise higher; and if you immerse several tubes of bores of different sizes, you will see it rise to different heights in each of them. In making this experiment, you should colour the water with a little red wine, in order to render the effect more obvious.
All porous substances, such as sponge, bread, linen, &c. may be considered as collections of capillary tubes: if you dip one end of a lump of sugar into water, the fluid will rise in it, and wet it considerably above the surface of the water into which you dip it.
Emily. In making tea I have often observed that effect, without being able to account for it.
Mrs. B. Now that you are acquainted with the attraction of cohesion, I must endeavour to explain to you that of Gravitation, which is probably a modification of the same power; the first is perceptible only in very minute particles, and at very small distances; the other acts on the largest bodies, and extends to immense distances.