Caroline. You need only hold your hand perpendicularly over the candle, and then hold it sideways obliquely, to be sensible of the difference.

Emily. I do not doubt the fact, but I wish to have it explained.

Mrs. B. You are quite right; if Caroline had not been satisfied with ascertaining the fact, without understanding it, she would not have brought forward the candle as an illustration; the reason why you feel so much more heat if you hold your hand perpendicularly over the candle, than if you hold it sideways, is because a stream of heated vapour constantly ascends from the candle, or any other burning body, which being lighter than the air of the room, does not spread laterally but rises perpendicularly, and this led you to suppose that the rays were hotter in the latter direction. Had you reflected, you would have discovered that rays issuing from the candle sideways, are no less perpendicular to your hand when held opposite to them, than the rays which ascend when your hand is held over them.

The reason why the sun's rays afford less heat when in an oblique direction, than when perpendicular, is because fewer of them fall upon an equal portion of the earth; this will be understood better by referring to [plate 10. fig. 1], which represents two equal portions of the sun's rays, shining upon different parts of the earth. Here it is evident, that the same quantity of rays fall on the space A B, as fall on the space B C; and as A B is less than B C, the heat and light will be much stronger in the former than in the latter; A B, you see, represents the equatorial regions, where the sun shines perpendicularly; and B C, the temperate and frozen climates, where his rays fall more obliquely.

Emily. This accounts not only for the greater heat of the equatorial regions, but for the greater heat of our summers, as the sun shines less obliquely in summer than in winter.

Mrs. B. This you will see exemplified in [figure 2], in which the earth is represented, as it is situated on the 21st of June, and England receives less oblique, and consequently a greater number of rays, than at any other season; and [figure 3], shows the situation of England on the 21st of December, when the rays of the sun fall most obliquely upon her. But there is also another reason why oblique rays give less heat, than perpendicular rays; which is, that they have a greater portion of the atmosphere to traverse; and though it is true, that the atmosphere is itself a transparent body, freely admitting the passage of the sun's rays, yet it is always loaded more or less with dense and foggy vapour, which the rays of the sun cannot easily penetrate; therefore, the greater the quantity of atmosphere the sun's rays have to pass through in their way to the earth, the less heat they will retain when they reach it. This will be better understood, by referring to [fig. 4.] The dotted line round the earth, describes the extent of the atmosphere, and the lines which proceed from the sun to the earth, the passage of two equal portions of the sun's rays, to the equatorial and polar regions; the latter you see, from its greater obliquity, passes through a greater extent of atmosphere.

Caroline. And this, no doubt, is the reason why the sun, in the morning and in the evening, gives so much less heat, than at mid-day.

Mrs. B. The diminution of heat, morning and evening, is certainly owing to the greater obliquity of the sun's rays; and they are also affected by the other, both the cause, which I have just explained to you; the difficulty of passing through a foggy atmosphere is perhaps more particularly applicable to them, as mist and vapours are prevalent about the time of sunrise and sunset. But the diminished obliquity of the sun's rays, is not the sole cause of the heat of summer; the length of the days greatly conduces to it; for the longer the sun is above the horizon, the more heat he will communicate to the earth.

Caroline. Both the longest days, and the most perpendicular rays, are on the 21st of June; and yet the greatest heat prevails in July and August.

Mrs. B. Those parts of the earth which are once heated, retain the heat for some length of time, and the additional heat they receive, occasions an elevation of temperature, although the days begin to shorten, and the sun's rays to fall more obliquely. For the same reason, we have generally more heat at three o'clock in the afternoon, than at twelve, when the sun is on the meridian.