Emily. Are not the eclipses of the sun produced by the moon passing between the sun and the earth?
Mrs. B. Yes; when the moon passes between the sun and the earth, she intercepts his rays, or, in other words, casts a shadow on the earth, then the sun is eclipsed, and daylight gives place to darkness, while the moon's shadow is passing over us.
When, on the contrary, the earth is between the sun and the moon, it is we who intercept the sun's rays, and cast a shadow on the moon; she is then said to be eclipsed, and disappears from our view.
Emily. But as the moon goes round the earth every month, she must be, once during that time, between the earth and the sun; and the earth must likewise be once between the sun and the moon, and yet we have not a solar and a lunar eclipse every month?
Mrs. B. I have already informed you, that the orbits of the earth and moon are not in the same plane, but cross or intersect each other; and the moon generally passes either above or below that of the earth, when she is in conjunction with the sun, and does not therefore intercept its rays, and produce an eclipse; for this can take place only when the moon is in, or near her nodes, which is the name given to those two points in which her orbit crosses that of the earth; eclipses cannot happen at any other time, because it is then only, that they are both in a right line with the sun.
Emily. And a partial eclipse of the moon takes place, I suppose, when, in passing by the earth, she is not sufficiently above or below the shadow, to escape it entirely?
Mrs. B. Yes, one edge of her disk then dips into the shadow, and is eclipsed; but as the earth is larger than the moon, when eclipses happen precisely at the nodes, they are not only total, but last for upwards of three hours.
A total eclipse of the sun rarely occurs, and when it happens, the total darkness is confined to one particular part of the earth, the diameter of the shadow not exceeding 180 miles; evidently showing that the moon is smaller than the sun, since she cannot entirely hide it from the earth. In [fig. 1, plate 12], you will find a solar eclipse described; S is the sun, M the moon, and E the earth; and the moon's shadow, you see, is not large enough to cover the earth. The lunar eclipses, on the contrary, are visible from every part of the earth, where the moon is above the horizon; and we discover, by the length of time which the moon is passing through the earth's shadow, that it would be sufficient to eclipse her totally, were she many times her actual size; it follows, therefore, that the earth is much larger than the moon.