Emily. This want of cohesion is then the reason why fluids can never be formed into figures, or maintained in heaps; for though it is true the wind raises water into waves, they are immediately afterwards destroyed by gravity, and water always finds its level.

Mrs. B. Do you understand what is meant by the level, or equilibrium of fluids?

Emily. I believe I do, though I feel rather at a loss to explain it. Is not a fluid level when its surface is smooth and flat, as is the case with all fluids, when in a state of rest?

Mrs. B. Smooth, if you please, but not flat; for the definition of the equilibrium of a fluid is, that every part of the surface is equally distant from the point to which they gravitate, that is to say, from the centre of the earth; hence the surface of all fluids must be spherical, not flat, since they will partake of the spherical form of the globe. This is very evident in large bodies of water, such as the ocean, but the sphericity of small bodies of water, is so trifling, that their surfaces appear flat.

This level, or equilibrium of fluids, is the natural result of their particles gravitating independently of each other; for when any particle of a fluid, accidentally finds itself elevated above the rest, it is attracted down to the level of the surface of the fluid, and the readiness with which fluids yield to the slightest impression, will enable the particle by its weight, to penetrate the surface of the fluid, and mix with it.

Caroline. But I have seen a drop of oil, float on the surface of water, without mixing with it.

Mrs. B. They do not mix, because their particles repel each other, and the oil rises to the surface, because oil is a lighter liquid than water. If you were to pour water over it, the oil would still rise, being forced up by the superior gravity of the water. Here is an instrument called a spirit-level, ([fig. 1, plate 13.]) which is constructed upon the principle of the equilibrium of fluids. It consists of a short tube A B, closed at both ends, and containing a little water, or more commonly some spirits: it is so nearly filled, as to leave only a small bubble of air; when the tube is perfectly horizontal, this bubble will occupy the middle of it, but when not perfectly horizontal, the water runs to the lower, and the bubble of air or spirit rises to the upper end; by this instrument, the level of any situation, to which we apply it, may be ascertained.

From the strong cohesion of their particles, you may therefore consider solid bodies as gravitating in masses, while every particle of a fluid may be considered as separate, and gravitating independently of each other. Hence the resistance of a fluid, is considerably less, than that of a solid body; for the resistance of the particles, acting separately, is more easily overcome.

Emily. A body of water, in falling, does certainly less injury than a solid body of the same weight.

Mrs. B. The particles of fluids, acting thus independently, press against each other in every direction, not only downwards, but upwards, and laterally or sideways; and in consequence of this equality of pressure, every particle remains at rest, in the fluid. If you agitate the fluid, you disturb this equality of pressure, and the fluid will not rest, till its equilibrium is restored.