In neither of these cases of simple elective attraction, therefore, can we accomplish our purpose. But let us previously combine together the lime and nitric acid, so as to form a nitrat of lime, a compound salt, the constituents of which are united by a power equal to 4. If then we present this compound to the sulphat of soda, a decomposition will ensue, because the sum of the forces which tend to preserve the two salts in their actual state is not equal to that of the forces which tend to decompose them, and to form new combinations. The nitric acid, therefore, will combine with the soda, and the sulphuric acid with the lime.

CAROLINE.

I understand you now very well. This double effect takes place because the numbers 8 and 4, which represent the degrees of attraction of the constituents of the two original salts, make a sum less than the numbers 7 and 6, which represent the degrees of attraction of the two new compounds that will in consequence be formed.

MRS. B.

Precisely so.

CAROLINE.

But what is the meaning of quiescent and divellent forces, which are written in the diagram?

MRS. B.

Quiescent forces are those which tend to preserve compounds in a state of rest, or such as they actually are: divellent forces, those which tend to destroy that state of combination, and to form new compounds.

These are the principal circumstances relative to the doctrine of chemical attractions, which have been laid down as rules by modern chemists; a few others might be mentioned respecting the same theory, but of less importance, and such as would take us too far from our plan. I should, however, not omit to mention that Mr. Berthollet, a celebrated French chemist, has questioned the uniform operation of elective attraction, and has advanced the opinion, that, in chemical combinations, the changes which take place depend not only upon the affinities, but also, in some degree, on the respective quantities of the substances concerned, on the heat applied during the process, and some other circumstances.