Yes; but the term affinity is objectionable in this case, because, as that word is used to express a chemical attraction (which can be destroyed only by decomposition), it cannot be applicable to the slight and transient union that takes place between free caloric and the bodies through which it passes; an union which is so weak, that it constantly yields to the tendency which caloric has to an equilibrium. Now you clearly understand, that the passage of caloric, through bodies that are good conductors, is much more rapid than through those that are bad conductors, and that the former both give and receive it more quickly, and therefore, in a given time, more abundantly, than bad conductors, which makes them feel either hotter or colder, though they may be, in fact, both of the same temperature.

CAROLINE.

Yes, I understand it now; the table, and the book lying upon it, being really of the same temperature, would each receive, in the same space of time, the same quantity of heat from my hand, were their conducting powers equal; but as the table is the best conductor of the two, it will absorb the heat from my hand more rapidly, and consequently produce a stronger sensation of cold than the book.

MRS. B.

Very well, my dear; and observe, likewise, that if you were to heat the table and the book an equal number of degrees above the temperature of your body, the table, which before felt the colder, would now feel the hotter of the two; for, as in the first case it took the heat most rapidly from your hand, so it will now impart heat most rapidly to it. Thus the marble table, which seems to us colder than the mahogany one, will prove the hotter of the two to the ice; for, if it takes heat more rapidly from our hands, which are warmer, it will give out heat more rapidly to the ice, which is colder. Do you understand the reason of these apparently opposite effects?

EMILY.

Perfectly. A body which is a good conductor of caloric, affords it a free passage; so that it penetrates through that body more rapidly than through one which is a bad conductor; and consequently, if it is colder than your hand, you lose more caloric, and if it is hotter, you gain more than with a bad conductor of the same temperature.

MRS. B.

But you must observe that this is the case only when the conductors are either hotter or colder than your hand; for, if you heat different conductors to the temperature of your body, they will all feel equally warm, since the exchange of caloric between bodies of the same temperature is equal. Now, can you tell me why flannel clothing, which is a very bad conductor of heat, prevents our feeling cold?

CAROLINE.