Yet as the warm air rises from the earth and the cold air descends to it, I should have supposed that heat would have accumulated in the upper regions of the atmosphere, and that we should have felt the air warmer as we ascended?

MRS. B.

The atmosphere, you know, diminishes in density, and consequently in weight, as it is more distant from the earth; the warm air, therefore, rises only till it meets with a stratum of air of its own density; and it will not ascend into the upper regions of the atmosphere until all the parts beneath have been previously heated. The length of summer even in warm climates does not heat the air sufficiently to melt the snow which has accumulated during the winter on very high mountains, although they are almost constantly exposed to the heat of the sun’s rays, being too much elevated to be often enveloped in clouds.

EMILY.

These explanations are very satisfactory; but allow me to ask you one more question respecting the increased levity of heated liquids. You said that when water was heated over the fire, the particles at the bottom of the vessel ascended as soon as heated, in consequence of their specific levity: why does not the same effect continue when the water boils, and is converted into steam? and why does the steam rise from the surface, instead of the bottom of the liquid?

MRS. B.

The steam or vapour does ascend from the bottom, though it seems to arise from the surface of the liquid. We shall boil some water in this Florence flask, ([Plate IV.] Fig. 1.) in order that you may be well acquainted with the process of ebullition;—you will then see, through the glass, that the vapour rises in bubbles from the bottom. We shall make it boil by means of a lamp, which is more convenient for this purpose than the chimney fire.

[Plate IV.]

Vol. I. p. 84.