Fig. 251.—Illustrating the principle of Siemens' drum winding. In order to make the winding and connections clear, one coil and the commutator is shown assembled, although the latter is not put in place until after all the sections have been wound, the ends of the wires being temporarily twisted together until all can be soldered to the risers. The cores of these early machines were of wood overspun circumferentially with iron wire before receiving the longitudinal copper windings.
Ques. What is the chief advantage of the drum armature?
Ans. It reduces considerably the large amount of dead wire necessary with the ring type.
Ques. How is this accomplished?
Ans. By winding the wire entirely on the outer surface of a cylinder or drum, as it is called, as shown in [fig. 251], thus none of the wire is screened by the metal of the core.
Fig. 252.—Elementary four coil drum winding, showing the connections with the commutator segments, and directions of currents in the several coils. The action of this type of armature is fully explained in the text.
[Fig. 252] shows an elementary four coil drum armature. Starting from the point a and following the winding around without reference at first to the commutator, it will be found that the rectangular turns of the wire form a closed circuit, and are electrically in series with one another in the order of the numbers marked on them.
With respect to the connections to the four segments w, x, y, z, of the commutator it will be found that at two of these, x and y, the pressures in the windings are both directed from, or both directed toward the junction with the connecting wire. At the other two segments, z and w, one pressure is toward the junction and the other directed from it. If, therefore, the brushes be placed on x and y they will supply current to an external circuit, z and w, for the moment being idle segments.
Disc Armatures.—The inductors of a disc armature move in a plane, perpendicular to the direction of the lines of force, about an axis parallel to them as shown in [fig. 253]. The main difficulty with this type has been in constructing it so that it will be strong and capable of resisting wear and tear. It was introduced in an effort to avoid the losses due to eddy currents and hysteresis present in the other types of armature.