Ans. The state of the charge is not only indicated by the density of the electrolyte and the voltage of the cell, but also by the color of the plates, which is considered by many authorities as one of the best tests for ascertaining the condition of a battery.


Figs. 1,121 and 1,122.—Two methods of charging from a direct current lighting system. The simplest method of charging is from an incandescent light circuit, using lamps connected in parallel to reduce the voltage to that of the battery, the current being adjusted by varying the number of lamps in circuit. The group of lamps is in series with the battery to be charged, and the combination is connected across the circuit furnishing the current. If the charging source be a 110-120 volt circuit, and the rate required be 6 amperes, twelve 16 c. p. or six 32 c. p. lamps, in parallel, and the group in series with the battery, will give the desired charging rate, unless high efficiency lamps be used, when more will be required. In case a lower charging rate, say 2 amperes be used, then a proportionately fewer number of lamps will be needed; but the length of time required to complete the charge will be correspondingly increased. Instead of lamps, as in [fig. 1,121], a rheostat is sometimes used, as shown in fig 1,122. Its resistance should be such as to produce, when carrying the normal charging current, a drop in volts equal to the difference between the pressure of the charging source and that of the battery to be charged; thus, if a battery of three cells, giving 6 volts, is to be charged from a 110 volt circuit at a 6 ampere rate, the resistance would be, according to Ohm's law,
(110 - 6) ÷ 6 = 17.3 ohms.
The carrying capacity of the rheostat should be slightly in excess of the current required for charging. An ammeter with suitable scale should be inserted in the battery circuit to indicate the current. For charging more than one battery at a time from a 110 volt circuit, the batteries should be connected in series (positive terminal of one battery to the negative of the next, and so on). The charging rate should be that of the battery with the lowest rate. The resistance to be inserted will be less than if only one battery is being charged; where lamp resistance is used, this means more lamps in parallel. Care should be taken to remove each battery from the circuit as it becomes charged, inserting additional resistance to take its place.

Ques. What are the colors of the plates?

Ans. In the case of formed plates, and before the first charging, the positives are of a dark brown color with whitish or reddish gray spots, and the negatives are of a yellowish gray. The whitish or reddish gray spots on the positive plates are small particles of lead sulphate which have not been reduced to lead peroxide during the process of forming, and represent imperfect sulphation.

As a general rule, the first charging should be carried on until these spots completely disappear. After this the positive plates should be of a dark red or chocolate color at the end of the discharge, and of a wet slate or nearly black color when fully charged. A very small discharge is sufficient, however, to change them from black to the dark red or chocolate color.

If the battery has been discharged to a pressure lower than 1.8 volts, the white sulphate deposits will reappear, turning the dark red color to a grayish tint in patches or all over the face of the plate, or in the form of scales of a venetian red color.

The formation of these scales while charging indicates that the maximum charging current is too large and should be reduced until the scales or white deposits fall off or disappear, after which the current can be increased again.

During charging, the yellowish gray color of the negatives changes to a pale slate color which grows slightly darker at the completion of the charge. The color of the negatives always remains, however, much lighter than that of the positives.

Ques. How are the best results obtained in charging?

Ans. The rate of charge should be normal, except in cases of emergency. At such a rate, unless the constant voltage method be employed, the cell may be considered full when the voltmeter reads 2.5 volts during charge. The electrolyte should be kept at uniform density throughout the cell; when water is added, because of evaporation, it should be added by means of a funnel reaching to the bottom of the cell. Care should be taken never to add acid after evaporation; otherwise the electrolyte will be too heavy. Hydrometer readings should be taken regularly; the reading is an excellent indication of the amount of charge in the battery. Hydrometer readings are useless, however, unless the precaution be taken to keep the electrolyte of uniform density.