The special atmospheric conditions which bring about the formation of waterspouts are not well known; they doubtless include, however, warm, moist air next the surface of the sea and cold air above. Just why these storms never attain greater size or endurance is not yet known. These disturbances have been seen for centuries, but as yet they have not been, in the scientific sense, observed. Their picturesqueness attracts all beholders; it is interesting to note the fact that perhaps the earliest description of their phenomena—one which takes account in the scientific spirit of all the features which they present—was written by the poet Camoëns in the Lusiad, in which he strangely mingles fancy and observation in his account of the great voyage of Vasco da Gama. The poet even notes that the water which falls when the spout is broken is not salt, but fresh—a point which clearly proves that not much of the water which the tube contains is derived from the sea. It is, in fact, watery vapour drawn from the air next the surface of the ocean, and condensed in its ascent through the tube. In this and other descriptions of Nature Camoëns shows more of the scientific spirit than any other poet of his time. He was in this regard the first of modern writers to combine a spiritual admiration for Nature with some sense of its scientific meaning.

In treating of the atmosphere, meteorologists base their studies largely on changes in the weight of that medium, which they determine by barometric observations. In fact, the science of the air had its beginning in Pascal's admirable observation on the changes in the height of a column of mercury contained in a bent tube as he ascended the volcanic peak known as Puy de Dome, in central France. As before noted, it is to the disturbances in the weight of the air, brought about mainly by variations in temperature, that we owe all its currents, and it is upon these winds that the features we term climate in largest measure depend. Every movement of the winds is not only brought about by changes in the relative weight of the air at certain points, but the winds themselves, owing to the momentum which the air attains by them, serve to bring about alterations in the quantity of air over different parts of the earth, which are marked most distinctly by barometric variations. These changes are exceedingly complicated; a full account of them would demand the space of this volume. A few of the facts, however, should be presented here. In the first place, we note that each day there is normally a range in the pressure which causes the barometer to be at the lowest at about four o'clock in the morning and four o'clock in the afternoon, and highest at about ten o'clock in those divisions of the day. This change is supposed to be due to the fact that the motes of dust in the atmosphere in the night, becoming cooled, condense the water vapour upon their surfaces, thus diminishing the volume of the air. When the sun rises the water evaporated by the heat returns from these little storehouses into the body of the atmosphere. Again in the evening the condensation sets in; at the same time the air tends to drift in from the region to the westward, where the sun is still high, toward the field where the barometer has been thus lowered; the current gradually attains a certain volume, and so brings about the rise of the barometer about ten o'clock at night.

In the winter time, particularly on the well-detached continent of North America, we find a prevailing high barometer in the interior of the country and a corresponding low state of pressure on the Atlantic Ocean. In the summer season these conditions are on the whole reversed.

Under the tropics, in the doldrum belt, there is a zone of low barometer connected to the ascending currents which take place along that line. This is a continuous manifestation of the same action which gives a large area of a disklike form in the centre or eye of the hurricane and in the middle portion of the tornado's whirl. In general, it may be said that the weight of the air is greatest in the regions from which it is blowing toward the points of upward escape, and least in and about those places where the superincumbent air is rising through a temporary or permanent line of escape. In other words, ascending air means generally a relatively low barometer, while descending air is accompanied by greater pressure in the field upon which it falls.

In almost every part of the earth which is affected by a particular physiography we find that the movements of the atmosphere next the surface are qualified by the condition which it encounters. In fact, if a person were possessed of all the knowledge which could be obtained concerning winds, he could probably determine as by a map the place where he might chance to find himself, provided he could extend his observations over a term of years. In other words, the regimen of the winds—at least those of a superficial nature—is almost as characteristic of the field over which they go as is a map of the country. Of these special winds a number of the more important have been noted, only a few of which we can advert to. First among these may well come the land and sea breezes which are remarked about all islands which are not continuously swept by permanent winds. One of the most characteristic instances of these alternate winds is perhaps that afforded on the island of Jamaica.

The island of Jamaica is so situated within the basin of the Caribbean that it does not feel the full influence of the trades. It has a range of high mountains through its middle part. In the daytime the surface of the land, which has the sun overhead twice each year, and is always exposed to nearly vertical radiation, becomes intensely hot, so that an upcurrent is formed. The formation of this current is favoured by the mountains, which apply a part of the heat at the height of about a mile above the surface of the sea. This action is parallel to that we notice when, in order to create a draught in the air of a chimney, we put a torch some distance up above the fireplace, thus diminishing the height of the column of air which has to be set in motion. It is further shown by the fact that when miners sought to make an upcurrent in a shaft, in order to lead pure air into the workings through other openings, they found after much experience that it was better to have the fire near the top of the shaft rather than at the bottom.

The ascending current being induced up the mountain sides of Jamaica, the air is forced in from the sea to the relatively free space. Before noon the current, aided in its speed by a certain amount of the condensation of the watery vapour before described, attains the proportions of a strong wind. As the sun begins to sink, the earth's surface pours forth its heat; the radiation being assisted by the extended surfaces of the plants, cooling rapidly takes place. Meanwhile the sea, because of the great heat-storing power of water, is very little cooled, the ascent of the air ceases, the temporary chimney with its updraught is replaced by a downward current, and the winds blow from the land until the sun comes again to reverse the current. In many cases these movements of the daily winds flowing into and from islands induce a certain precipitation of moisture in the form of rain. Generally, however, their effect is merely to ameliorate the heat by bringing alternately currents from the relatively cool sea and from the upper atmosphere to lessen the otherwise excessive temperature of the fields which they traverse.

Although characteristic sea and land winds are limited to regions where the sun's heat is great, they are traceable even in high latitudes during the periods of long-continued calm attended with clear skies. Thus on the island of Martha's Vineyard, in Massachusetts, the writer has noted, when the atmosphere was in such a state, distinct night and day, or sea and land, breezes coming in their regular alternation. During the night when these alternate winds prevail the central portion of the island, at the distance of three miles from the sea, is remarkably cold, the low temperature being due to the descending air current. To the same physical cause may be attributed the frequent insets of the sea winds toward midday along the continental shores of various countries. Thus along the coast of New England in the summer season a clear, still, hot day is certain to lead to the creation of an ingoing tide of air, which reaches some miles into the interior. This stream from the sea enters as a thin wedge, it often being possible to note next the shore when the movement begins a difference of ten degrees of temperature between the surface of the ground to which the point of the wedge has attained, and a position twenty feet higher in the air. This is a beautiful example to show at once how the relative weight of the atmosphere, even when the differences are slight, may bring about motion, and also how masses of the atmosphere may move by or through the rest of the medium in a way which we do not readily conceive from our observations on the transparent mass. Very few people have any idea how general is the truth that the air, even in continuous winds, tends to move in more or less individualized masses. This, however, is made very evident by watching the gusts of a storm or the wandering patches of wind which disturb the surface of an otherwise smooth sea.