The rate of movement of wind waves increases with their height. Slight undulations go forward at the rate of less than half a mile an hour. The greater surges of the deeps when swept by the strongest winds move with the speed which, though not accurately determined, has been estimated by the present writer as exceeding forty miles an hour. As these surges often have a length transverse to the wind of a mile or more, a width of about an eighth of a mile, and a height of from thirty-five to forty-five feet, the amount of energy which they transmit is very great. If it could be effectively applied to the shores in the manner in which the energy of exploding gunpowder is applied by cannon shot, it is doubtful whether the lands could have maintained their position against the assaults of the sea. But there are reasons stated below why the ocean waves can use only a very small part of their energy in rending the rocks against which they strike on the coast line.

In the first place, we should note that wind waves have very little influence on the bottom of the deep sea. If an observer could stand on the sea floor at the depth of a mile below a point over which the greatest waves were rolling, he could not with his unaided senses discern that the water was troubled. He would, indeed, require instruments of some delicacy to find out that it moved at all. Making the same observations at the depth of a thousand feet, it is possible that he would note a slight swaying motion in the water, enough sensibly to affect his body. At five hundred feet in depth the movement would probably be sufficient to disturb fine mud. At two hundred feet, the rasping of the surge on the bottom would doubtless be sufficient to push particles of coarse sand to and fro. At one hundred feet in depth, the passage of the surge would be strong enough to urge considerable pebbles before it. Thence up the slope the driving action would become more and more intense until we attained the point where the wave broke. It should furthermore be noted that, while the movement of the water on the floor of the deep sea as the wave passes overhead would be to and fro, with every advance in the shallowing and consequent increased friction on the bottom, the forward element in the movement would rapidly increase. Near the coast line the effect of the waves is continually to shove the detritus up the slopes of the continental shelf. Here we should note the fact that on this shelf the waves play a part exactly the opposite of that effected by the tides. The tides, as we have noted, tend to drag the particles down the slope, while the waves operate to roll them up the declivity.

As the wave in advancing toward the shore ordinarily comes into continually shallowing water, the friction on the bottom is ever-increasing, and serves to diminish the energy the surge contains, and therefore to reduce its proportions. If this action operated alone, the subtraction which the friction makes would cause the surf waves which roll in over a continental shelf to be very low, probably in height less than half that which they now attain. In fact, however, there is an influence at work to increase the height of the waves at the expense of its width. Noting that the friction rapidly increases with the shallowing, it is easy to see that this resistance is greatest on the advancing front of the wave, and least on its seaward side. The result is that the front moves more slowly than the rear, so that the wave is forced to gain in height; but for the fact that the total friction which the wave encounters takes away most of its impetus, we might have combers a hundred feet high rolling upon the shelving shores which almost everywhere face the seas.

As the wave shortens its width and gains in relative height, though not in actual elevation, another action is introduced which has momentous consequences. The water in the bottom of the wave is greatly retarded in its ongoing by its friction over the sea floor, while the upper part of the surge is much less affected in this way. The result is that at a certain point in the advance, the place of which is determined by the depth, the size, and the speed of the undulation, the front swiftly steepens until it is vertical, and the top shoots forward to a point where it is no longer supported by underlying water, when it plunges down in what is called the surf or breaker. In this part of the wave's work the application of the energy which it transmits differs strikingly from the work previously done. Before the wave breaks, the only geological task which it accomplishes is effected by forcing materials up the slope, in which movement they are slightly ground over each other until they come within the battering zone of the shore, where they may be further divided by the action of the mill which is there in operation.

When the wave breaks on the shore it operates in the following manner: First, the overturning of its crest sends a great mass of water, it may be from the height of ten or more feet, down upon the shore. Thus falling water has not only the force due to its drop from the summit of the wave, but it has a share of the impulse due to the velocity with which the surge moved against the shore. It acts, in a word, like a hammer swung down by a strong arm, where the blow represents not only the force with which the weight would fall of itself, but the impelling power of the man's muscles. Any one who will expose his body to this blow of the surf will recognise how violent it is; he may, if the beach be pebbly, note how it drives the stones about; fragments the size of a man's head may be hurled by the stroke to the distance of twenty feet or more; those as large as the fist may be thrown clear beyond the limits of the wave. So vigorous is this stroke that the sound of it may sometimes be heard ten miles inland from the coast where it is delivered.

Moving forward up the slope of a gently inclined beach, the fragments of the wave are likely to be of sufficient volume to permit them to regather into a secondary surge, which, like the first, though much smaller, again rises into a wall, forming another breaker. Under favourable conditions as many as four or five of these successive diminishing surf lines may be seen. The present writer has seen in certain cases as many as a dozen in the great procession, the lowest and innermost only a few inches high, the outer of all with a height of perhaps twenty feet.

Along with the direct bearing action of the surf goes a to-and-fro movement, due to the rushing up and down of the water on the beach. This swashing affects not only the broken part of the waves, but all the water between the outer breaker and the shore. These swayings in the surf belt often swing the débris on the inner margin over a range of a hundred feet or more, the movement taking place with great swiftness, affecting the pebbles to the depth of several inches, and grinding the bits together in a violent way. Listening to the turmoil of a storm, we can on a pebbly beach distinctly hear the sound of the downward stroke, a crashing tone, and the roar of the rolling stones.

As waves are among the interesting things in the world, partly on account of their living quality and partly because of their immediate and often exceeding interest to man, we may here note one or two peculiar features in their action. In the first place, as the reader who has gained a sense of the changes in form of action may readily perceive, the beating of waves on the shore converts the energy which they possess into heat. This probably warms the water during great storms, so that by the hand we may note the difference in temperature next the coast line and in the open waters. This relative warmth of the surf water is perhaps a matter of some importance in limiting the development of ice along the shore line; it may also favour the protection of the coast life against the severe cold of the winter season.

The waves which successively come against the shore in any given time, particularly if a violent wind is blowing on to the coast, are usually of about the same size. When, however, in times of calm an old sea, as it is called, is rolling in, the surges may occasionally undergo very great variations in magnitude. Not infrequently these occasional waves are great enough to overwhelm persons who are upon the rocks next the shore. These greater surges are probably to be accounted for by the fact that in the open sea waves produced by winds blowing in different directions may run on with their diverse courses and varied intervals until they come near the shore. Running in together, it very well happens that two of the surges belonging to different sets may combine their forces, thus doubling the swell. The danger which these conjoined waves bring is obviously greatest on cliff shores, where, on account of the depth of water, the waves do not break until they strike the steep.