Wherever in a humid region, on a gentle slope—say with an inclination not exceeding ten feet to the mile—the soil is possessed by any species of plants whose stems grow closely together, so that from their decayed parts a spongelike mass is produced, we have the conditions which favour the development of climbing bogs. Beginning usually in the shores of a pool, these plants, necessarily of a water-loving species, retain so much moisture in the spongy mass which they form that they gradually extend up the slope. Thus extending the margin of their field, and at the same time thickening the deposit which they form, these plants may build a climbing bog over the surface until steeps are attained where the inclination is so great that the necessary amount of water can not be held in the spongy mass, or where, even if so held, the whole coating will in time slip down in the manner of an avalanche.
The greater part of the climbing bogs of the world are limited to the moist and cool regions of high latitudes, where species of moss belonging to the genus Sphagnum plentifully flourish. These plants can only grow where they are continuously supplied with a bath of water about their roots. They develop in lake bogs as far south as Mexico, but in the climbing form they are hardly traceable south of New England, and are nowhere extensively developed within the limits of the United States. In more northern parts of this continent, and in northwestern Europe, particularly in the moist climate of Ireland, climbing bogs occupy great areas, and hold up their lakes of interstitially contained water over the slopes of hills, where the surface rises at the rate of thirty feet or more to the mile. So long as the deposit of decayed vegetable matter which has accumulated in this manner is thin, therefore everywhere penetrated by the fibrous roots of the moss, it may continue to cling to its sloping bed; but when it attains a considerable thickness, and the roots in the lower part decay, the pulpy mass, water-laden in some time of heavy rain, break away in a vast torrent of thick, black mud, which may inundate the lower lands, causing widespread destruction.
In more southern countries, other water-loving plants lead to the formation of climbing bogs. Of these, the commonest and most effective are the species of reeds, of which our Indian cane is a familiar example. Brakes of this vegetation, plentifully mingled with other species of aquatic growth, form those remarkable climbing bogs known as the Dismal and other swamps, which numerously occur along the coast line of the United States from southern Maryland to eastern Texas. Climbing bogs are particularly interesting, not only from the fact that they are eminently peculiar effects of plant growth, but because they give us a vivid picture of those ancient morasses in which grew the plants that formed the beds of vegetable matter now appearing in the state of coal. Each such bed of buried swamp material was, with rare exceptions, where the accumulation took place in lakes, gathered in climbing bogs such as we have described.
Lake bogs occur in all parts of the world, but in their best development are limited to relatively high latitudes, and this for the reason that the plants which form vegetable matter grow most luxuriantly in cool climates and in regions where the level of the basin is subject to less variation than occurs in the alternating wet and dry seasons which exist in nearly all tropical regions. The fittest conditions are found in glaciated regions, where, as before noted, small lakes are usually very abundant. On the shores of one of these pools, of size not so great that the waves may attain a considerable height, or in the sheltered bay of a larger lake, various aquatic plants, especially the species of pond lilies, take root upon the bottom, and spread their expanded leaves on the surface of the water. These flexible-leaved and elastic-stemmed plants can endure waves which attain no more than a foot or two of height, and by the friction which they afford make the swash on the shore very slight. In the quiet water, rushes take root, and still further protect the strand, so that the very delicate vegetation of the mosses, such as the Sphagnum, can fix itself on the shore.
As soon as the Sphagnum mat has begun its growth, the strength given by its interlaced fibres enables it to extend off from the shore and float upon the water. In this way it may rapidly enlarge, if not broken up by the waves, so that its front advances into the lake at the rate of several inches each year. While growing outwardly it thickens, so that the bottom of the mass gradually works down toward the floor of the basin. At the same time the lower part of the sheet, decaying, contributes a shower of soft peat mud to the floor of the lake. In this way, growing at its edge, deepening, and contributing to an upgrowth from the bottom, a few centuries may serve entirely to fill a deep basin with peaty accumulation. In general, however, the surface of the bog closes over the lake before the accumulation has completely filled the shoreward portions of the area. In these conditions we have what is familiarly known as a quaking bog, which can be swayed up and down by a person who quickly stoops and rises while standing on the surface. In this state the tough and thick sheet of growing plants is sufficient to uphold a considerable weight, but so elastic that the underlying water can be thrown into waves. Long before the bog has completely filled the lake with the peaty accumulations the growth of trees is apt to take place on its surface, which often reduces the area to the appearance of a very level wet wood.
Fig. 17.—Diagram showing beginning of peat bog: A, lake; B, lilies and rushes; C, lake bog; D, climbing bog.
Climbing and lake bogs in the United States occupy a total area of more than fifty thousand square miles. In all North America the total area is probably more than twice as great. Similar deposits are exceedingly common in the Eurasian continent and in southern Patagonia. It is probable that the total amount of these fields in different parts of the world exceeds half a million square miles. These two groups of fresh-water swamps have an interest, for the reason that when reduced to cultivation by drainage and by subsequent removal of the excess of peaty matter, by burning or by natural decay, afford very rich soil. The fairest fields of northern Europe, particularly in Great Britain and Ireland, have been thus won to tillage. In the first centuries of our era a large part of England—perhaps as much as one tenth of the ground now tilled in that country—was occupied by these lands, which retained water in such measure as to make them unfit for tillage, the greater portion of this area being in the condition of thin climbing bog. For many centuries much of the energy of the people was devoted to the reclamation of these valuable lands. This task of winning the swamp lands to agriculture has been more completely accomplished in England than elsewhere, but it has gone far on the continent of Europe, particularly in Germany. In the United States, owing to the fact that lands have been cheap, little of this work of swamp-draining has as yet been accomplished. It is likely that the next great field of improvement to be cultivated by the enterprising people will be found in these excessively humid lands, from which the food-giving resources for the support of many million people can be won.
Fig. 18.—Diagram showing development of swamp: A, remains of lake; B, surface growth; c, peat.