It is best that all study of Nature should begin not in laboratories, nor with the things which are remote from us, but in the field of Nature which is immediately about us. The student, even if he dwell in the unfavourable conditions of a great city, is surrounded by the world which has yielded immeasurable riches in the way of learning, which he can appropriate by a little study. He can readily come to know something of the movements of the air; the buildings will give him access to a great many different kinds of stone; the smallest park, a little garden, or even a few potted plants and captive animals, may tell him much concerning the forms and actions of living beings. By studying in this way he can come to know something of the differences between things and their relations to each other. He will thus have a standard by which he can measure and make familiar the body of learning concerning Nature which he may find in books. From printed pages alone, however well they be written, he can never hope to catch the spirit that animates the real inquirer, the true lover of Nature.

On many accounts the most attractive way of beginning to form the habit of the naturalist is by the study of living animals and plants. To all of us life adds interest, and growth has a charm. Therefore it is well for the student to start on the way of inquiry by watching the actions of birds and insects or by rearing plants. It is fortunate if he can do both these agreeable things. When the habit of taking an account of that most important part of the world which is immediately about him has been developed in the student, he may profitably proceed to acquire the knowledge of the invisible universe which has been gathered by the host of inquirers of his race. However far he journeys, he should return to the home world that lies immediately and familiarly about him, for there alone can he acquire and preserve that personal acquaintance with things which is at once the inspiration and the test of all knowledge.

Along with this study of the familiar objects about us the student may well combine some reading which may serve to show him how others have been successful in thus dealing with Nature at first hand. For this purpose there are, unfortunately, but few works which are well calculated to serve the needs of the beginner. Perhaps the best naturalist book, though its form is somewhat ancient, is White's Natural History of Selborne. Hugh Miller's works, particularly his Old Red Sandstone and My Schools and Schoolmasters, show well how a man may become a naturalist under difficulties. Sir John Lubbock's studies on Wasps, and Darwin's work on Animals and Plants under Domestication are also admirable to show how observation should be made. Dr. Asa Gray's little treatise on How Plants Grow will also be useful to the beginner who wishes to approach botany from its most attractive side—that of the development of the creature from the seed to seed.

There is another kind of training which every beginner in the art of observing Nature should obtain, and which many naturalists of repute would do well to give themselves—namely, an education in what we may call the art of distance and geographical forms. With the primitive savage the capacity to remember and to picture to the eye the shape of a country which he knows is native and instinctive. Accustomed to range the woods, and to trust to his recollection to guide him through the wilderness to his home, the primitive man develops an important art which among civilized people is generally dormant. In fact, in our well-trodden ways people may go for many generations without ever being called upon to use this natural sense of geography. The easiest way to cultivate the geographic sense is by practising the art of making sketch maps. This the student, however untrained, can readily do by taking first his own dwelling house, on which he should practise until he can readily from memory make a tolerably correct and proportional plan of all its rooms. Then on a smaller scale he should begin to make also from recollection a map showing the distribution of the roads, streams, and hills with which his daily life makes him familiar. From time to time this work from memory should be compared with the facts. At first the record will be found to be very poor, but with a few months of occasional endeavour the observer will find that his mind takes account of geographic features in a way it did not before, and, moreover, that his mind becomes enriched with impressions of the country which are clear and distinct, in place of the shadowy recollections which he at first possessed.

When the student has attained the point where, after walking or riding over a country, he can readily recall its physical features of the simpler sort, he will find it profitable to undertake the method of mapping with contour lines—that is, by pencilling in indications to show the exact shape of the elevations and depressions. The principle of contour lines is that each of them represents where water would come against the slope if the area were sunk step by step below the sea level—in other words, each contour line marks the intersection of a horizontal plane with the elevation of the country. Practice on this somewhat difficult task will soon give the student some idea as to the complication of the surface of a region, and afford him the basis for a better understanding of what geography means than all the reading he can do will effect. It is most desirable that training such as has been described should be a part of our ordinary school education.

Very few people have clear ideas of distances. Even the men whose trade requires some such knowledge are often without that which a little training could give them. Without some capacity in this direction, the student is always at a disadvantage in his contact with Nature. He can not make a record of what he sees as long as the element of horizontal and vertical distance is not clearly in mind. To attain this end the student should begin by pacing some length of road where the distances are well known. In this way he will learn the length of his step, which with a grown man generally ranges between two and a half and three feet. Learning the average length of his stride by frequent counting, it is easy to repeat the trial until one can almost unconsciously keep the count as he walks. Properly to secure the training of this sort the observer should first attentively look across the distance which is to be determined. He should notice how houses, fences, people, and trees appear at that distance. He will quickly perceive that each hundred feet of additional interval somewhat changes their aspect. In training soldiers to measure with the eye the distances which they have to know in order effectively to use the modern weapons of war, a common device is to take a squad of men, or sometimes a company, under the command of an officer, who halts one man at each hundred yards until the detachment is strung out with that interval as far as the eye can see them. The men then walk to and fro so that the troops who are watching them may note the effects of increased distance on their appearance, whether standing or in motion. At three thousand yards a man appears as a mere dot, which is not readily distinguishable. Schoolboys may find this experiment amusing and instructive.

After the student has gained, as he readily may, some sense of the divisions of distance within the range of ordinary vision, he should try to form some notion of greater intervals, as of ten, a hundred, and perhaps a thousand miles. The task becomes more difficult as the length of the line increases, but most persons can with a little address manage to bring before their eyes a tolerably clear image of a hundred miles of distance by looking from some elevation which commands a great landscape. It is doubtful, however, whether the best-trained man can get any clear notion of a thousand miles—that is, can present it to himself in imagination as he may readily do with shorter intervals.

The most difficult part of the general education which the student has to give himself is begun when he undertakes to picture long intervals of time. Space we have opportunities to measure, and we come in a way to appreciate it, but the longest lived of men experiences at most a century of life, and this is too small a measure to give any notion as to the duration of such great events as are involved in the history of the earth, where the periods are to be reckoned by the millions of years. The only way in which we can get any aid in picturing to ourselves great lapses of time is by expressing them in units of distance. Let a student walk away on a straight road for the distance of a mile; let him call each step a year; when he has won the first milestone, he may consider that he has gone backward in time to the period of Christ's birth. Two miles more will take him to the station which will represent the age when the oldest pyramids were built. He is still, however, in the later days of man's history on this planet. To attain on the scale the time when man began, he might well have to walk fifty miles away, while a journey which would thus by successive steps describe the years of the earth's history since life appeared upon its surface would probably require him to circle the earth at least four times. We may accept it as impossible for any one to deal with such vast durations save with figures which are never really comprehended. It is well, however, to enlarge our view as to the age of the earth by such efforts as have just been indicated.

When we go beyond the earth into the realm of the stars all efforts toward understanding the ranges of space or the durations of time are quite beyond the efforts of man. Even the distance of about two hundred and forty thousand miles which separates us from the moon can not be grasped by even the greater minds. No human intelligence, however cultivated, can conceive the distance of about ninety-five million miles which separates us from the sun. In the celestial realm we can only deal with relations of space and time in a general and comparative way. We can state the distances if we please in millions of miles, or we can reckon the ampler spaces by using the interval which separates the earth from the sun as we do a foot rule in our ordinary work, but the depths of the starry spaces can only be sounded by the winged imagination.

Although the student has been advised to begin his studies of Nature on the field whereon he dwells, making that study the basis of his most valuable communications with Nature, it is desirable that he should at the same time gain some idea as to the range and scope of our knowledge concerning the visible universe. As an aid toward this end the following chapters of this book will give a very brief survey of some of the most important truths concerning the heavens and the earth which have rewarded the studies of scientific men. Of remoter things, such as the bodies in the stellar spaces, the account will be brief, for that which is known and important to the general student can be briefly told. So, too, of the earlier ages of the earth's history, although a vast deal is known, the greater part of the knowledge is of interest and value mainly to geologists who cultivate that field. That which is most striking and most important to the mass of mankind is to be found in the existing state of our earth, the conditions which make it a fit abode for our kind, and replete with lessons which he may study with his own eyes without having to travel the difficult paths of the higher sciences.