approaches unity for large values of

.

Suppose that in the stationary states one of the electrons moves at a distance from the nucleus which is large compared with the distance of the other electrons. If the atom is neutral, the outer electron will be subject to very nearly the same forces as the electron in the hydrogen atom. Consequently, the expression (13) may be interpreted as indicating the presence of a number of series of stationary states of the atom in which the configuration of the inner electrons is very nearly the same for all states in one series, while the configuration of the outer electron changes from state to state in the series approximately in the same way as in the hydrogen atom.

It will appear that these considerations offer a possible simple explanation of the appearance of the Rydberg constant in the formula for the spectral series of every element. In this connexion, however, it may be noticed that on this point of view the Rydberg constant is not exactly the same for every element, since the expression (8) for

depends on the mass of the central nucleus. The correction due to the finite value of

is very small for elements of high atomic weight, but is comparatively large for hydrogen. It may therefore not be permissible to calculate the Rydberg constant directly from the hydrogen spectrum. Instead of the value 109675 generally assumed, the theoretical value for a heavy atom is 109735.

§ 2. The Effect of an Electric Field.