. It will be seen that this is just what we should expect on the present theory if the spectra are emitted by atoms which have lost two electrons and are regaining one of them. In this case, the outer electron will rotate round a system of double charge, and we must assume that in the stationary states it will have configurations approximately the same as an electron rotating round a helium nucleus. This view seems in conformity with the general evidence as to the conditions of the excitation of the ordinary spectra and the spectra of enhanced lines. From Fowler’s results, it will appear that the helium spectrum given by (3) for
has exactly the same relation to the spectra of enhanced lines of other elements as the hydrogen spectrum has to the ordinary spectra. It may be expected that it will be possible to observe spectra of a new class corresponding to a loss of 3 electrons from the atom, and in which the Rydberg constant
is replaced by
. No definite evidence, however, has so far been obtained of the existence of such spectra[20].
Additional evidence of the essential validity of the interpretation of formula (13) seems also to be derived from the result of Stark’s experiments on the effect of electric fields on spectral lines. For other spectra, this effect is even more complex than for the hydrogen spectrum, in some cases not only are a great number of components observed, but the components are generally not symmetrical with regard to the original line, and their distance apart varies from line to line in the same series in a far more irregular way than for the hydrogen lines[21]. Without attempting to account in detail for any of the electrical effects observed, we shall see that a simple interpretation can be given of the general way in which the magnitude of the effect varies from series to series.
In the theory of the electrical effect on the hydrogen spectrum given in the [former section], it was supposed that this effect was due to an alteration of the energy of the systems in the external field, and that this alteration was intimately connected with a considerable deformation of the orbit of the electron. The possibility of this deformation is due to the fact that without the external field every elliptical orbit of the electron in the hydrogen atom is stationary. This condition will only be strictly satisfied if the forces which act upon the electron vary exactly as the inverse square of the distance from the nucleus, but this will not be the case for the outer electron in an atom containing more than one electron. It was pointed out in paper IV. that the deviation of the function