Fig. 17.—Sugg's Steatite-Float Governor.

Peebles's needle governor-burner. Another instrument of this class—the last which I shall notice—is Peebles's needle governor-burner. For simplicity combined with remarkable efficiency, it is undoubtedly ahead of all its compeers. Somewhat similar in principle to Giroud's rheometer, it differs from that instrument in many of the details of its construction; and while dispensing with the use of liquid, maintains equal efficiency in operation. It was described as follows by Dr. W. Wallace, in a lecture on "Gas Illumination," delivered before the Society of Arts in January, 1879:[ [13]—"In a little cylinder stands a so-called needle, on the point of which rests a flanged cone of exceedingly thin metal. At one side of the cylinder there is a small tube leading away the gas, and the orifice of which is influenced in area by the action of the cone. The instrument, by means of a screw leading into the side tube, can be made to deliver any desired number of cubic feet, which it does with surprising accuracy, provided that the pressure of the gas is not Efficiency of the needle governor-burner. less than 6-10ths of an inch." As to the efficiency of the instrument, Dr. Wallace proceeded to state:—"In trials that I have made, I have not found the variations of volume at different pressures to exceed 1 per cent." For situations where this extreme nicety of operation is not absolutely essential, or where the rate of consumption is to be invariable, the instrument is constructed in a somewhat modified and simpler form. The small tube on the side of the instrument is dispensed with, and the gas permitted to pass through perforations in the lower part of the cone. With this alteration there is a nearer approach to the construction of the rheometer; but, as in that instrument, there is no provision for altering the rate of consumption to suit different circumstances.

Fig. 18.—Peebles's Needle Governor.

CHAPTER V.

As was remarked in the introduction to this treatise, recent years have witnessed a very considerable advance in the construction of gas-burners, and in the amount of light capable of being developed from each cubic foot of gas consumed. Undoubtedly the most noticeable feature of this advance is the successful application of the regenerative, or, as it would be more appropriately designated, recuperative system. Briefly stated, this consists in utilizing the heat of the products of combustion from the gas flame (which otherwise would be dissipated into the atmosphere) to raise the temperature of the gas before it is ignited; and, likewise, of the air necessary for combustion. The temperature of an illuminating gas flame is usually Temperature of a gas flame. estimated to be between 2000° and 2400° Fahr.; and as the products of combustion must leave the flame at a temperature little, if at all, inferior to the former figure, it must be evident that there is an ample margin of heat for employment in this direction. A considerable proportion of the large amount of heat conveyed by those products of combustion which, under ordinary circumstances, is imparted to the surrounding atmosphere—often elevating its temperature to an unnecessary and prejudicial extent—is, by this method, returned to the flame; intensifying the process of combustion, and augmenting, in a remarkable degree, the illuminating power developed from the gas consumed. Thus the ultimate effect of the operation is to produce a concentration of heat in the flame, and the conversion of superfluous heat into beneficial light. Within a comparatively recent period, the utility of this process was strongly disputed; and it was stoutly maintained, by many persons, that as the immediate effect of ignition was to cause a temperature of more than 2000° Fahr. to be attained, the heating of the gas and air prior to their combustion could produce little or no beneficial effect upon the illuminating power of the flame. However, the falsity of this view of the case is conclusively demonstrated by practical experiment; the remarkably high results yielded by burners that have been constructed upon the regenerative system sufficiently attesting the correctness of the principles upon which they are founded.

Although, in general, both the gas and air supplies are heated, it is chiefly due to the latter that the beneficial effect noticed is produced; and this for two reasons. First, because the quantity of air is so much greater than the gas it is required to consume; being, at the nearest approach to theoretical perfection, fully six times its volume. Second, because four-fifths in volume of the air consists of inert nitrogen, which does not contribute anything to the heat of the flame, but, when applied in its normal, cold condition, abstracts no inconsiderable proportion of heat from it. Yet the heating of the gas itself is not without very appreciable influence. In an ordinary gas flame there is always an area of non-illumination around, and extending to a variable distance from the burner head. This is caused partly by the conduction of heat from the flame by the burner; but, in a greater degree, by the cooling action of the issuing stream of cold gas, as is shown by its extending farther from the burner in proportion to the pressure or velocity with which the gas issues. The prejudicial effect due to the former is obviated to a great extent by constructing the burner of steatite, or other non-conducting material. To remedy the latter, nothing will avail but the heating of the gas supply.

Effects of heating the gas and air. The effect of heating the gas is to enlarge the area of the illuminating portion of the flame, and, in a minor degree, to enhance the intensity of incandescence to which the carbonaceous particles are raised. When the gas issues from the burner at a temperature little inferior to the temperature of ignition, the hydrocarbons it contains are immediately decomposed; the liberated particles of carbon are raised to the temperature of incandescence; and the illuminating area of the flame is extended downwards, even to the surface of the burner. The heating of the air operates chiefly to produce and maintain a more elevated temperature of the flame; and, in this manner, contributes to the development of a higher illuminating power from the same area of flame. In the case of ordinary gas flames, the cold atmosphere by which they are surrounded, by abstracting heat from the flame, prevents the most favourable conditions for the development of light from being attained. When, however, the air immediately surrounding the flame has been previously heated, the particles of carbon (the incandescence of which furnishes the desired illuminating power) attain to a much more exalted temperature; and, consequently, give out a greater degree of light.