Fig. 1.—Early Gas-Burners.
(From Accum's "Treatise on Gas-Lights.")
Nor was much advance made upon these arrangements down to the year 1816, judging from Accum's "Treatise" (before cited), as the subjoined extract from that work, together with the above illustrations, will show:—
The burners are formed in various ways—either a tube ending with a simple orifice, at which the gas issues in a stream, and if once lighted will continue to burn with the most steady and regular light imaginable, as long as the gas is supplied; or two concentric tubes of brass or sheet iron are placed at a distance of a small fraction of an inch from each other, and closed at the bottom. The gas which enters between these cylinders, when lighted, forms an Argand lamp, which is supplied by an internal and external current of air in the usual manner. Or the two concentric tubes are closed at the top with a ring, having small perforations, out of which the gas can issue; thus forming small distinct streams of light.
It is interesting, in view of the present demand for increased illumination, and for burners of high illuminating power, to note the amount of light produced by the burners then in use. In Mr. Murdock's paper we find it stated that each of the Argands in use at Messrs. Phillips and Lee's establishment gave "a light equal to that of 4 candles (mould candles of 6 to the pound);" and each of the cockspurs "a light equal to 2¼ of the same candles." From which meagre results we conclude that, besides being burnt in an ignorant and wasteful manner, the gas consumed was wofully deficient in illuminating power.
THE BATSWING BURNER.
Who invented the batswing burner? A notable advance was made when the batswing burner was invented. To whom we are indebted for this invention seems involved in some doubt. Although Clegg, in the historical introduction to his valuable work,[ [2] says, very distinctly, that "the batswing burner was introduced by a Mr. Stone, an intelligent workman employed by Mr. Winsor," it is not so much as mentioned by Accum, even in the third edition of his "Treatise;" and Accum, it may be remarked, was for some time closely associated with Winsor in the promotion of the latter's ambitious and visionary schemes. Yet, if Clegg's statement be correct, it would almost appear to fix the date of the introduction of this burner as prior to 1816. But to whomsoever is due the credit of its invention, certain is it that the batswing burner was a considerable improvement upon the old cockspur. Producing a better light for the gas consumed, it assisted to demonstrate still further the superiority of gas lighting over other methods of illumination; and as it could be supplied at a trifling cost, and contained no delicately adjusted nor easily injured parts, it enabled the benefits of the new method of lighting to be extended to wherever artificial light was required.
Fig. 2.—Batswing Burner.
From the cockspur and single jet burners the gas ascended in streams, Superiority of the batswing over the cockspur burner. rising into the air until it came in contact with sufficient oxygen to completely consume it. In order that this might take place without producing a flame of an inordinate length, and without much smoke, the orifices were restricted to a very small size; and the gas issuing from these at considerable pressure tended to draw in, and mix with the air in its course. Besides the loss of illuminating power caused by this mixture of air with the gas flame (similar to what takes place in a Bunsen burner), the cooling influence upon the small body of flame of the mass of metal composing the burner, operated still further to reduce the quantity of light which the gas was calculated to yield. With the batswing the gas was spread out producing, when ignited, a thin sheet of flame, by which means the gas was enabled to combine more readily with the air necessary to effect complete combustion. The size of the flame being, in comparison with that of the cockspur, so much larger proportionately to the metal burner, the cooling effect of the latter was not so apparent. The increased size of flame, also, of itself, tended to improve the illuminating power; each portion of flame contributing to elevate and sustain the temperature of the whole, and so to heighten the intensity of incandescence to which the light-giving particles were raised.