[14] The Hon. Mrs. Ward, Trimleston House, near Dublin, in “Recreative Science,” p. 281.

Mr Walkey, who observed the lunar eclipse of March 19th, 1848, near Collumpton, says—“The appearances were as usual till 20 minutes past 9; at that period, and for the space of the next hour, instead of an eclipse, or the shadow (umbra) of the Earth being the cause of the total obscurity of the Moon, the whole phase of that body became very quickly and most beautifully illuminated; and assumed the appearance of the glowing heat of fire from the furnace, rather tinged with a deep red. * * * The whole disc of the Moon being as perfect with light as if there had been no eclipse whatever! * * * The Moon positively gave good light from its disc during the total eclipse!”[15]

[15] “Philosophical Magazine,” No. 220, for August, 1848.

In the astronomical portion of the “Illustrated London Almanack for 1864,” by Mr. Glaisher, a beautiful tinted engraving is given representing the appearance of the Moon during the total eclipse of June 1, 1863, when all the light and dark places—the so-called mountains, seas, &c., were plainly visible. In the accompanying descriptive chapter, the following sentences occur:—“At the time of totality the Moon presented a soft woolly appearance, apparently more globular in form than when fully illuminated. Traces of the larger and brighter mountains were visible at the time of totality, and particularly the bright rays proceeding from Tycho, Kepler, and Aristarchus. * * * At first, when the obscured part was of small dimensions, it was of an iron grey tint, but as it approached totality, the reddish light became so apparent that it was remarked that the Moon ‘seemed to be on fire;’ and when the totality had commenced, it certainly looked like a fire smouldering in its ashes, and almost going out.”

If then, the Sun and Moon have many times been seen above the horizon when the latter was eclipsed, how can it be said that the Earth’s shadow was the cause of a lunar eclipse, when the Earth was not between or in a line with the Sun and Moon? And how can the Moon’s non-luminous surface be distinctly visible and illuminated during the very totality of an eclipse, if all the light of the Sun is intercepted by the Earth?

Again, if the Moon is a sphere, which it is declared to be, how can its surface reflect the light of the Sun? If her surface was a mass of polished silver, it could not reflect from more than a mere point! Let a silvered glass ball or globe of considerable size be held before a lamp or fire of any magnitude, and it will be seen that instead of the whole surface reflecting light, there will be a very small portion only illuminated. But the Moon’s whole surface is brilliantly illuminated! a condition or effect utterly impossible if it be spherical. The surface might be illuminated from the Sun, or any other source if opaque, instead of polished, like an ordinary silvered mirror, but it could not shine intensely from every part, and brightly illuminate the objects before it, as the Moon does so beautifully when full and in a clear firmament. If the Earth were admitted to be globular, and to move, and to be capable of throwing a shadow by intercepting the light of the Sun, it would be impossible for a lunar eclipse to occur thereby, unless at the same time the Moon be proved to be non-luminous, and to shine only by reflection. But this is not proved; it is only assumed as an essential part of a theory. The contrary is capable of proof, and proof beyond the power of doubt, viz., that the Moon is self-luminous, or shines with a light peculiar to herself, and therefore independently of the Sun. A reflector necessarily gives off what it receives. If a mass of red-hot metal be placed before a plane or concave surface, heat will be reflected. If snow or ice be similarly placed, cold will be reflected. If light, ordinary or coloured, be presented, the same will be reflected. If sound of a given pitch be produced, the same pitch will be reflected. If the note A be sounded upon a musical instrument, a reflector would not return the note B or C, but the same note, altered only in degree or intensity, but not in “pitch.” A reflector receiving a red light would not return a blue or yellow light. A reflector collecting the cold from a mass of ice, would not throw off heat; nor the contrary. Nor could the Moon, if a reflector, radiate or throw down upon the Earth any other light than such as she receives from the Sun. No difference could exist in the quality or character of the light, and it could differ in no respect but the quantity or intensity.

The light of the Sun and of the Moon are different in their general appearance—in the colour and action upon the eye.

The Sun’s light is drying and preservative, or antiseptic. The Moon’s light is damp and putrefactive.

The Sun’s rays will put out a common fire; the Moon’s light will increase the combustion. The light of the Sun falling upon certain chemical substances, produces a change of colour, as in photographic and other processes. The light of the Moon fails to produce the same effect. Dr. Lardner, at page 121 of his excellent work, “The Museum of Science,” says—“The most striking instance of the effect of certain rays of solar light in blackening a light-colored substance, is afforded by chloride of silver, which is a white substance, but which immediately becomes black when acted upon by the rays near the violet extremity of the spectrum. This substance, however, highly susceptible as it is of having its colour affected by light, is, nevertheless, found not to be changed in any sensible degree when exposed to the light of the Moon, even when that light is condensed by the most powerful burning lenses.”

The Sun’s light when concentrated by a number of mirrors, or a large burning lens, produces a focus which is entirely non-luminous, but in which the heat is so great that metallic and alkaline substances are quickly fused; earthy and mineral compounds almost immediately vitrified; and all animal and vegetable structures in a few seconds burned up and destroyed. But the Moon’s light so concentrated produces a brilliant focus, so luminous that it is difficult to look upon it; and yet there is no increase of temperature! “If the most delicate thermometer be exposed to the full light of the Moon, shining with its greatest lustre, the mercury is not elevated a hair’s breadth, neither would it be if exposed in the focus of her rays concentrated by the most powerful lenses. This has been proved by actual experiment.”[16] “This question has been submitted to the test of direct experiment. * * * The bulb of a thermometer sufficiently sensitive to render apparent a change of temperature amounting to the thousandth part of a degree, was placed in the focus of a concave reflector of vast dimensions, which, being directed to the Moon, the lunar rays were collected with great power upon it. Not the slightest change, however, was produced in the thermometric column, proving that a concentration of rays sufficient to fuse gold, if they proceeded from the Sun, does not produce a change of temperature so great as the thousandth part of a degree, when they proceed from the Moon.”[17]