[36] “Report of Royal Astronomical Society,” for Feb. 11, 1848, No. 4, vol. 8.

Such mistakes as the above ought at least to make the advocates of the Newtonian theory less positive, and more ready to acknowledge that at best their system is but hypothetical and must sooner or later give place to a philosophy the premises of which are demonstrable, and which is in all its details sequent and consistent.

PENDULUM EXPERIMENTS AS PROOFS OF EARTH’S MOTION.

In the early part of the year 1851, the scientific journals and nearly all the newspapers published in Great Britain and on the Continents of Europe and America were occupied in recording and discussing certain experiments with the pendulum, first made by M. Foucault, of Paris; and the public were startled by the announcement that the results furnished a practical proof of the Earth’s rotation.

The subject was referred to in the Literary Gazette, in the following words:—“Everybody knows what is meant by a pendulum in its simplest form, a weight hanging by a thread to a fixed point. Such was the pendulum experimented upon long ago by Galileo, who discovered the well-known law of isochronous vibrations, applicable to the same. The subject has since received a thorough examination, as well theoretical as practical, from mathematicians and mechanicians; and yet, strange to say, the most remarkable feature of the phenomenon has remained unobserved and wholly unsuspected until within the last few weeks, when a young and promising French physicist, M. Foucault, who was induced by certain reflections to repeat Galileo’s experiments in the cellar of his mother’s house at Paris, succeeded in establishing the existence of a fact connected with it which gives an immediate and visible demonstration of the Earth’s rotation. Suppose the pendulum already described to be set moving in a vertical plane from north to south, the plane in which it vibrates, to ordinary observation, would appear to be stationary. M. Foucault, however, has succeeded in showing that this is not the case, but that the plane is itself slowly moving round the fixed point as a centre in a direction contrary to the Earth’s rotation, i.e., with the apparent heavens, from east to west. His experiments have since been repeated in the hall of the observatory, under the superintendence of M. Arago, and fully confirmed. If a pointer be attached to the weight of a pendulum suspended by a long and fine wire, capable of turning round in all directions, and nearly in contact with the floor of a room, the line which this pointer appears to trace on the ground, and which may easily be followed by a chalk mark, will be found to be slowly, but visibly, and constantly moving round, like the hand of a watch dial; and the least consideration will show that this ought to be the case, and will excite astonishment that so simple a consequence as this is, of the most elementary laws of Geometry and Mechanics, should so long have remained unobserved. * * * The subject has created a great sensation in the mathematical and physical circles of Paris. It is proposed to obtain permission from the Government to carry on further observations by means of a pendulum suspended from the dome of the Pantheon, length of suspension being a desideratum in order to make the result visible on a larger scale, and secure greater constancy and duration in the experiment. The time required for the performance of a complete revolution of the plane of vibration would be about 32 hours 8 minutes for the parallel of Paris; 30 hours 40 minutes for that of London; and at 30 degrees from the equator exactly 48 hours. Certainly any one who should have proposed not many weeks back to prove the rotation of the Earth upon which we stand by means of direct experiment made upon its surface would have run the risk, with the mob of gentlemen who write upon mechanics, of being thought as mad as if he were to have proposed reviving Bishop Wilkins’s notable plan for going to the North American colonies in a few hours, by rising in a balloon from the Earth and gently floating in the air until the Earth, in its diurnal rotation, have turned the desired quarter towards the suspended æronaut, whereupon as gently to descend; so necessary and wholesome is it occasionally to reconsider the apparently simplest and best established conclusions of science.”

The following is from the Scotsman, which has always been distinguished for the accuracy of its scientific papers. The article bears the initials “C. M.,” which will at once be recognised as those of Mr. Charles Maclaren, for many years the accomplished editor of that journal:—“The beautiful experiment contrived by M. Foucault to demonstrate the rotation of the globe, has deservedly excited universal interest. * * * A desire has always been felt that some method could be devised of rendering this rotation palpable to the senses. Even the illustrious Laplace participated in this feeling and has left it on record. ‘Although,’ he says, ‘the rotation of the Earth is now established with all the certainty which the physical sciences require, still a direct proof of that phenomenon ought to interest both geometricians and astronomers.’ No man ever knew the laws of the planetary motions better than Laplace, and before penning such a sentence, it is probable that he had turned the subject in his mind, and without discovering any process by which the object could be attained; but it does not follow that if he had applied the whole force of his genius to the task, he would not have succeeded. Be this as it may, here we have the problem solved by a man not probably possessing a tithe of his science or talent; and, what is very remarkable, after the discovery was made, it was found to be legitimately deducible from mathematical principles. * * * In this, as in many other cases, the fact comes first, and takes us by surprise; after which we find that we had long been in possession of the principles from which it flowed, and that, with the clue we had in our hands, theory should have revealed the fact to us long before. M. Foucault’s communication describing his experiments is in the Comptes Rendus of the Academy of Sciences, for 3rd February, 1851. His first experiments were made with a pendulum only two metres (6ft. 6¹⁄₄in.) in length, consisting of a steel wire from ⁶⁄₁₀ths to ¹¹⁄₁₀ths of a millimetre in diameter (the millimetre is the 25th part of an inch); to the lower end of which was attached a polished brass ball, weighing 5 kilogrammes, or 11 English pounds. * * * A metallic point projecting below the ball, and so directed as if it formed a continuation of the suspension wire, served as an index to mark the change of position more precisely. The pendulum hung from a steel plate in such a manner as to move freely in any vertical plane. To start the oscillatory movement without giving the ball any bias, it was drawn to one side with a cord, which held the ball by a loop; the cord was then burned, after which the loop fell off, and the vibrations (generally limited to an arc of 15 or 20 degrees) commenced. In one minute the ball had sensibly deviated from the original plane of vibration towards the observer’s left. Afterwards he experimented at the Observatory with a pendulum 11 metres (30 feet) long, and latterly at the Pantheon with one still longer. The advantage of a large pendulum, as compared with a small one, is, that a longer time elapses before it comes to a state of rest; for machinery cannot be employed here, as in a clock, to continue the motion. The pendulum is suspended over the centre of a circular table, whose circumference is divided into degrees and minutes. The vibrations are begun in the manner above described, and in a short time it is observed that the pendulum, instead of returning to the same point of the circle from which it started, has shifted to the left. If narrowly observed, the change in the plane of vibration (says M. Foucault) is perceptible in one minute, and in half an hour, “Il saute aux yeux,” it is quite palpable. At Paris the change exceeds 11 degrees in an hour. Thus, supposing the oscillations to commence in a plane directed south and north, in two hours the oscillations will point SSW. and NNE.; in four hours they will point SW. and NE.; and in eight hours the oscillations will point due east and west, or at right angles to their original direction. To a spectator the change seems to be in the pendulum, which, without any visible cause, has shifted round a quarter of a circle; but the real change is in the table, which, resting on the Earth, and accompanying it in its rotation, has performed a fourth (and something more) of its diurnal revolution.

No one anticipated such a result; and the experiment has been received by some with incredulity, by all with wonderment; and one source of the incredulity arises from the difficulty of conceiving how, amidst the ten thousand experiments of which the pendulum has been the subject, so remarkable a fact could have escaped notice so long. Fully admitting that these experiments have generally been conducted with pendulums which had little freedom of motion horizontally, we still think odd that somebody did not stumble upon the curious fact.

Though all the parts of the Earth complete their revolution in the same space of time, it is found that the rate of horizontal motion in Foucault’s pendulum varies with the latitude of the place where the experiment is made. At the pole, the pendulum would pass over 15 degrees in an hour, like the Earth itself, and complete its circuit in 24 hours. At Edinburgh, the pendulum would pass over 12¹⁄₂ degrees in an hour, and would complete its revolution in 29 hours 7 minutes. At Paris, the rate of motion is 11 degrees and 20 minutes per hour, and the revolution should be completed in 32 hours.

FIG. 31.