| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
| 15 | 13 | 15 | 8 | 13 | 20 | 16 | 16 | 30 | 21 | 13 | 27 | 14 | 19 | 15 | 26 | 13 | 9 | 33 | 30 | 17 | 12 | 19 | 20 | 19 | 11 |
This clearly eliminates Cases 4, 5 and 6.
Referring to the recurring words and groups above noted, we figure the number of letters between each.
| AII | ... | AII | 45 | = | 3×3×5 |
| BK | ... | BK | 345 | = | 23×3×5 |
| CT | ... | CT | 403 | No factors | |
| CTW | ... | CTW | 60 | = | 2×2×3×5 |
| DL | ... | DL | 75 | = | 3×5×5 |
| ES | ... | ES | 14 | = | 2×7 |
| FJ | ... | FJ | 187 | No factors | |
| NP | ... | NP | 14 | = | 2×7 |
| OL | ... | OL | 120 | = | 2×2×2×3×5 |
| OS | ... | OS | 220 | = | 11×2×2×5 |
| OSB | ... | OSB | 465 | = | 31×3×5 |
| PO | ... | PO | 105 | = | 7×3×5 |
| SQ | ... | SQ | 250 | = | 2×5×5×5 |
| TLF | ... | TLF | 80 | = | 2×2×2×2×5 |
| TP | ... | TP | 405 | = | 3×3×3×3×5 |
| UV | ... | UV | 115 | = | 23×5 |
| XMKU | ... | XMKU | 120 | = | 2×2×2×3×5 |
| UV | ... | UV | 73 | No factors | |
| YJ | ... | YJ | 85 | = | 17×5 |
The dominant factor is clearly 5, so we may consider that five alphabets were used, indicating a keyword of five letters. Writing the message in lines of five letters each and making a frequency table for each of the five columns so formed, we find the following:
Frequency Tables
| Colum 1 | Column 2 | Column 3 | Column 4 | Column 5 | |||||
| A | 11 | A | 111111111 | A | 1 | A | 1 | A | 11 |
| B | B | 111 | B | 111 | B | B | 1111111 | ||
| C | 1111111 | C | 1 | C | 111 | C | 1111 | C | |
| D | 11 | D | 11 | D | 1 | D | D | 111 | |
| E | 1111 | E | E | 11 | E | 1111111 | E | ||
| F | 111 | F | F | 111111111 | F | 111 | F | 11111 | |
| G | 111111111 | G | G | 111 | G | 11 | G | 11 | |
| H | 111 | H | 11111 | H | 111 | H | 111 | H | 11 |
| I | 11 | I | 11 | I | 1111111 | I | 11111111111111111 | I | 11 |
| J | 11111 | J | 1 | J | 111111 | J | J | 111111111 | |
| K | 111111 | K | 11111 | K | K | 1 | K | 1 | |
| L | L | 1111111111111111111 | L | 11 | L | 11111 | L | 1 | |
| M | M | M | 1111111 | M | 1111 | M | 111 | ||
| N | 1111111 | N | 111 | N | 1111 | N | N | 11111 | |
| O | 11111 | O | O | 111111111 | O | 1 | O | ||
| P | 1111111 | P | 1111111 | P | 11111111 | P | 1111 | P | |
| Q | 11111 | Q | Q | Q | 11 | Q | 111111 | ||
| R | R | 1 | R | 1 | R | 111111 | R | 1 | |
| S | S | 11111111 | S | 111111 | S | 111111111111 | S | 1111111 | |
| T | 1111111 | T | 111 | T | 11111 | T | 1 | T | 11111111111111 |
| U | 1111111 | U | 111 | U | 111111 | U | U | 1 | |
| V | 11111 | V | V | 11 | V | 11111 | V | ||
| W | 111 | W | 1111 | W | W | 11111 | W | 1111111 | |
| X | 11 | X | X | 1111 | X | 11111111 | X | 111111 | |
| Y | 1111 | Y | 11111 | Y | Y | 111 | Y | 1111111 | |
| Z | Z | 11111 | Z | 111 | Z | Z | 111 | ||
In the table for Column 1, the letter G occurs 9 times. Let us consider it tentatively as E. Then if the cipher alphabet runs regularly and in the direction of the regular alphabet, C (7 times) = A and the cipher alphabet bears a close resemblance to the regular frequency table. Note TUV (= RST) occurring respectively 7, 7, and 5 times and the non-occurrence of B, L, M, R, S, Z, (= Z, J, K, P, Q, and X respectively.)
In the next table, L occurs 19 times and taking it for E with the alphabet running in the same way, A=H. The first word of our message, CT, thus becomes AM when deciphered with these two alphabets and the first two letters of the key are C H.
Similarly in the third table we may take either F or O for E, but a casual examination shows that the former is correct and A=B (even if we were looking for a vowel for the next letter of the keyword).