This system of pruning—encouraging numerous feeders and one leader while the tree is young, and of allowing or rather inducing the branches, after the tree has acquired sufficient height, to spread out into a horizontal top, is in harmony with, and only humouring the natural disposition of trees, and is therefore both seemly and of easy practice[7]. The perfection of naval forest economy would consist in superadding (according to instructions to be given on training of timbers) a top of which every branch is a valuable bend or knee, though in consequence of the situation the timber will be fragile, and of light porous texture.

In pruning and educating for plank timber, the whole art consists in training the tree as much as possible, and with as little loss of branch as possible, to one leader and numerous feeders, and to the regular cone figure which the pine tribe naturally assumes. This can be best and most easily performed by timely attention—checking every over-luxuriant, overshadowing branch and wayward shoot on its first appearance; so that none of the feeders which spring forth at first may be smothered, till {14} they in turn become lowermost; and by the influence of rather close plantation, which of itself will perform in a natural manner all that we have been teaching by art, and will perform it well. This closeness must, however, be very guardedly employed, and timeously prevented from proceeding too far, otherwise the complete ruin of the forest, by premature decay or winds, may ensue, especially when it consists of pines. Of course all kinds of pines require no other attention than this (well-timed thinning), and to have their sickly moss covered under branches swept clean down.

SECTION II. TIMBERS.

Timbers, as before stated, are the ribs of the vessel, spreading out and upward (excepting at the bow and stern) at right angles to the keel and keelson, two large straight logs which form a double spinal support or backbone. The ribs or compass timbers in great public building establishments are sometimes bent by machinery, after being softened by steam or hot liquids[8]; and for this purpose the {15} cleanest straightest wood is requisite. We, however, do not believe that pieces of great diameter, bent artificially, can have equal strength and resilience as when grown bent—the fibre must in some degree be crippled. We admit that timbers and frames may be built of separate bended pieces of no great thickness, and have all the strength and resilience of natural bend: the strongest and most elastic mode of forming vessels would be to compose them of different layers of plank over each other in diagonal fashion, or at an angle 60°, but the labour and inconveniency of these modes would be great. We will not admit that an experiment between the strength of a piece of coarse cross-grained timber, half naturally bent, half cut out of the solid, and that of a piece of clean timber artificially bent, is any proof on the subject. Let us produce a clean natural bend, exactly fitted to its place, without any section of fibre, and make experiment with it. But at any rate, as this plan (bending of timbers) has never been adopted to any extent in our private building-yards, we must doubt its economy,—either {16} that the practice is of no considerable advantage, or that the requisite machinery is too expensive for private establishments, and conclude that fine bent timber still continues a necessary in the formation of at least our mercantile marine.

Of the very ingenious innovations in the structure of vessels contrived by Sir R. SEPPINGS, by which knees and crooked timber might nearly be superseded, we can only say, the practice is not followed, and, at least in private building-yards, not likely to be so;—that the demand for fine crooked timber, comparatively, is, and will continue to be, as great as ever. Should our war navy, from the introduction of steam impulse and bomb cannon, be reduced to fleets of strong gun-boats, the demand for crooked timber, instead of lessening, will greatly increase,—the building of frames of straight timber being more expensive, and less suitable, in small than in large vessels; and should war occur, in the hurry of the formation of a new war navy under a different principle, the speediest and simplest mode of construction will be followed.

Nearly two-thirds of the timbers of a vessel consist of the curves and bends a, b, c, d, e, f; the other third is of straighter timber, and easily obtained. {17} All timbers require to be straight in one way—in the plane of their side, and the sides generally to be square. The under measures embrace timbers of appropriate size for vessels from 50 to 500 tons register; it is seldom that merchantmen are required under or above this size. Of course, large war-vessels require timbers of larger dimension. The corresponding timbers of vessels of different size are nearly similar figures, and the length of their respective lines not far from being in the ratio of the cube root of the tonnage—a little deeper and thicker in the smaller vessels. When timbers are formed of larch or pine, they require to be a little more in diameter than when of oak. {18}

Fig. a, Flat floor, from 9 12 to 18 feet long (that is, 9 12 for a vessel of 50 tons, and 18 for one of 500), and from 9 to 16 inches deep at middle; thickness 14th less than depth, the diameter increasing in proportion to the length. When fillings such as s are used, flat floors are cut from straight logs.

b, Rising floor shorter, and same depth and thickness as former.

c, c, High rising floors, from 4 to 8 feet in length of wing, and a little deeper, and same thickness as former. From the difficulty of procuring this bend, the wings are often used of unequal length, according as the timber turns out, the shorter wing to exceed 3 feet, and more when of considerable diameter. Floors are of every rise from a to c, being flattest at midships, and rising gradually as they approach the bow and stern. In all timbers, it is necessary, for strength, that the fibre of the wood extend from one end to the other without much cross grain. See lines on high rising floor, c.

d, First foot-hook, from 7 to 13 feet long, and from 7 to 14 inches deep; thickness 15th less than depth.