We distinguish three kinds of nucleated red blood-corpuscles on the grounds of the following characters;
1. The normoblasts. These are red corpuscles of the size of the usual non-nucleated disc, whose protoplasm as a rule shews a pure hæmoglobin colour, and which possess a nucleus. Occasionally there may be 2-4 nuclei. The sharply defined nucleus lies generally in the centre, comprises the greater part of the cell, and is above all distinguished by its intense colour with nuclear stains, which exceeds that of the nuclei of the leucocytes, and indeed of all known nuclei. This property is so characteristic that the free nuclei, which occur occasionally in anæmias, and particularly often in leukæmia, may be recognised as nuclei of normoblasts, although surrounded by traces only of hæmoglobin, or by none at all.
2. The megaloblasts. These are 2-4 times as large as normal red blood corpuscles. Their protoplasm, which constitutes by far the chief portion of the body of the cell, very often shews anæmic degeneration to a greater or less degree. The nucleus is larger than that of the normoblasts, but does not form so considerable a fraction of the cell as in the latter. It is often not sharply defined, and is of a rounded shape. It is distinguished from the nucleus of the normoblast by its much weaker affinity for nuclear stains, which may often be so small that little practised observers perceive no nucleus.
Occasionally very large cells are present of the kind just described, which are therefore called gigantoblasts, but which are not distinguishable in other respects from the megaloblasts.
It cannot be denied that it is often difficult to decide whether a particular cell is to be regarded as a specially small megaloblast or a large normoblast. In such cases one would naturally search the preparation for perfect forms of hæmatoblasts, and for the presence of free nuclei or of megalocytes, in order to obtain an indirect conclusion concerning the cells in question.
3. The microblasts. These are occasionally present, e.g. in traumatic anæmias, but they are very seldom found, and have not so far attracted particular attention.
The question of the meaning of the normoblasts and megaloblasts has led to lively and significant discussions, partly in favour of, partly against the distinction between these two cell forms. After surveying the literature, we are forced to separate the megaloblasts from the normoblasts, in the first place because of their subsequent histories, and the peculiarities of their nuclei, and secondly because of clinical observation.
α. The fate of the nuclei. For some time past two views, almost diametrically opposed, have been in existence with regard to the nature of the change of the nucleated to the non-nucleated erythrocytes. The chief exponent of the one, Rindfleisch, taught that the nucleus of the erythroblasts leaves the cell, which thereby becomes a complete erythrocyte, whilst the nucleus itself, by the aid of the small remnant of protoplasm which surrounds it, takes up new material from the surrounding plasma, manufactures hæmoglobin and so becomes a fresh erythroblast. According to the second theory the erythroblasts change to non-nucleated discs by the destruction and solution of the nucleus within the cell body. ("Karyorrhexis," "Karyolysis.") The authors who support this view and also describe it as the only kind of erythrocyte formation are chiefly Kölliker and E. Neumann.
Rindfleisch arrived at his theory by direct observation of the process described, as it occurred in physiological saline solution with the blood of fœtal guinea-pigs and teased preparations of bone-marrow.