10. Experience has conclusively shown that an engineering student is very likely to slight a general subject in favor of a simultaneous technical or specialized subject. This fact, together with the necessity of a fixed sequence in technical engineering subjects, makes it practically impossible to secure any reasonable work in most general subjects when a student is at the same time carrying one or more technical studies. For these reasons it is necessary to make the later years of the curriculum nearly wholly technical, which makes specialization possible, if it does not invite it.
III. AIM OF ENGINEERING EDUCATION
Disciplinary values of engineering subjects
The three elements of engineering education, as indeed of all education, should be development, training, and information. The first is the attainment of intellectual power, the capacity for abstract conception and reasoning. The second includes the formation of correct habits of thought and methods of work; the cultivation of the ability to observe closely, to reason correctly, to write and speak clearly; and the training of the hand to execute. The third includes the acquisition of the thoughts and experiences of others, and of the truths of nature. The development of the mental faculties is by far the most important, since it alone confers that "power which masters all it touches, which can adapt old forms to new uses, or create new and better means of reaching old ends." Without this power the engineer cannot hope to practice his profession with any chance of success. The formation of correct habits of thinking and working, habits of observing, of classifying, of investigating, of discriminating, of proving instead of guessing, of weighing evidence, of patient perseverance, and of doing thoroughly honest work, is a method of using that power efficiently. The accumulation of facts is the least important. The power to acquire information and the knowledge of how to use it is of far greater value than any number of the most useful facts. The value of an education does not consist in the number of facts acquired, but in the ability to discover facts by personal observation and investigation and in the power to use these facts in deducing new conclusions and establishing fundamental principles. There is no comparison between the value of a ton of horseshoe nails and the ability to make a single nail.
Utilitarian aim of the engineering subjects: information and training
The engineering student usually desires to reverse the above order and assumes that the acquisition of information, especially that directly useful in his proposed profession, is the most valuable element of an education; and unfortunately some instructors seem to make the same mistake. The truth is that methods of construction, details of practice, mechanical appliances, prices of materials and labor, change so rapidly that it is useless to teach many such matters. However important such items are to the practicing engineer, they are of little or no use to the student; for later, when he does have need of them, methods, machines, and prices have changed so much that the information he acquired in college will probably be worse than useless. Technical details are learned of necessity in practice, and more easily then than in college; whereas in practice fundamental principles are learned with difficulty, if at all. A man ignorant of principles does not usually realize his own ignorance and limitations, or rather he is unaware of the existence of unknown principles. The engineering college should teach the principles upon which sound engineering practice is based, but should not attempt to teach the details of practice any further than is necessary to give zest and reality to the instruction and to give an intelligent understanding of the uses to be made of fundamental principles.
As evidence that technical information is not essential for success in an engineering profession, attention is called to the fact that a considerable number of men who took a course in one of the major divisions of engineering have practiced in another branch with reasonable success. The only collegiate training one of the most distinguished American engineers of the last generation had was a general literary course followed by a law course. Further, a considerable number have successfully practiced engineering, after only a general college education, and this in recent years when engineering curricula have become widely differentiated. Examples in other lines of business could be cited to show that a knowledge of technical details is not the most important element in a preparation for a profession or for business. The all-important thing is that the engineering student shall acquire the power to observe closely, to reason correctly, to state clearly, that he shall be able to extract information from books certainly and rapidly, and that he shall cultivate his judgment, initiative, and self-reliance. A student may have any amount of technical information, but if he seriously lacks any of the qualities just enumerated, he cannot attain to any considerable professional success. However, if he has these qualities to a fair degree, he can speedily acquire sufficient technical details to enable him to succeed fairly well.
The chief aim of the engineering college should be to develop the intellectual power that will enable the student not only to acquire quickly the details of practice, but will also enable him ultimately to establish precedents and determine the practice of his times. Incidentally the engineering college should seek to expand the horizon and widen the sympathy of its students. In college classes there will be those who are either unable or unwilling to attain the highest educational ideals, and who will become only the hewers of wood and drawers of water of the engineering profession; but a setting before them of the highest ideals and even an ineffective training in methods of work will prepare them the better to fill mediocre positions.
The nearly universal engineering college course requires four years. The field properly belonging to even a specialized curriculum is so wide and the importance of a proper preparation of the engineers of the future is so great as appropriately to require more than four years of time; but the consensus of opinion is that for various reasons only four years are available for undergraduate work—the only kind here under consideration. Hence it is of vital importance that the highest ideals shall be set before the engineering students and that the methods of instruction employed shall be the best attainable.