As one approaches the north pole spots of like character become more numerous. Especially are such visible north of the Mare Acidalium in the arctic region thereabout, from 63° to 75° north.

From so widespread a set of instances the only explanation which seems to fit the phenomena is that the mean temperature of Mars is low, not very much above freezing, and that whatever causes a local fall in the temperature results in hoar-frost. Such an explanation accords well with the distance of the planet from the sun and the thinness of its atmosphere. At the same time it shows that the mean temperature over the greater part of the planet the greater part of the time is above the freezing-point and that consequently it is no bar to vegetation of a suitable sort.

That the hoar-frost should be found even at the equator may perhaps be due to the very thinness of the air-covering of Mars, which would tend to make the actual insolation more of a factor than it is with us, and by the great length of the Martian seasons. In midsummer the greatest insolation occurs in the arctic and temperate, not in the tropic regions; on the other hand, an atmosphere tends to accumulate heat for the tropics. With us the latter factor is prepotent; it would be less effective on Mars. Then again the double duration of summer would tend to emphasize insolation as the important factor in the matter. But it is possible that greater deposition plays a part in the matter. On earth the rainfall is greatest near the equator and something of the sort may be true of the zones of moisture on Mars. That the most striking spots are found to the west of large dark areas may in this connection have a meaning inasmuch as, such regions being vegetation-covered, the air over them is probably more moisture-laden.

One point about the position of the spots is of moment: they have all been found in the northern hemisphere or within ten degrees of it in the southern equatorial region. This seems at first a question of hemispheres; but when we consider that the light areas of the surface are chiefly in the boreal hemisphere and in the south tropic belt, we perceive that it may be rather the character of the surface there than the particular hemisphere in the abstract that is decisive in the matter. Nevertheless, the austral hemisphere is the hemisphere of extremes, possessing a shorter, hotter summer and a longer, colder winter than its antipodes. This would not favor sporadic small depositions of frost in summer so much as would a climate of a more mean temperature.

From the relative lack of atmospheric covering over the planet we should expect the nights to prove decidedly cool, while the days were fairly warm. Of this we have perhaps evidence in a singular aspect shown by the Mare Acidalium in June, 1903. The account of it in the Annals reads thus: “On May 22 an interesting and curious phenomenon presented itself. On that day, so soon as the Mare Acidalium had well rounded the terminator on to the disk, at λ352°, the whole of its central part showed white, the edges of the marking alone remaining as a shell to this brilliant core. So striking was the effect that beside appearing in the drawing it found echo in the notes. The next day no mention is made of it, and a drawing made under λ20° shows the Mare as usual and the bright spot in Tempe in its customary place. Neither was anything of the sort noticed on the 24th and 25th. But on the 26th, the day of the projection (upon the terminator), the effect of the 23d reappeared, the longitude of the centre being 332°. Fortunately on that day a further drawing was secured which enabled its subsequent behavior to be followed. Made three hours later than the other, the longitude of the centre being 13°, this drawing shows the Mare well on the disk, its whole area as dark as usual and with Tempe bright to the right of it toward the terminator. The terminator in question was the sunrise one, and we are offered two suppositions in explanation of the phenomenon: either the white was due to a morning deposition of hoar-frost which dissipated as the sun got up, or obliquity rendered some superficial deposit visible which more vertical vision hid. That the former inference is the more probable seems hinted at by the simultaneous appearance from the 19th to the 26th of other areas of white between the Mare and the pole. May 26 was 88 days after the northern summer solstice, and corresponded to July 31 on the earth.” Annals, Volume III, §564.

In this connection mention may pertinently be made of Schiaparelli’s repeated observation of regions that whiten with obliquity, a proclivity to which he particularly noticed Hellas and certain ‘islands’ in the Mare Erythraeum to be prone. Here as with the Mare Acidalium we certainly seem to be envisaging cases of matutinal frost melted by midday under the sun’s rays.


[1] Martian longitudes are now reckoned from the Fastigium Aryn, the mythologic cupola of the world, a spot easy of recognition because making the tongue in the jaws of the Sabaeus Sinus. It further commends itself because of lying within a degree of the equator. The longitudes are reckoned thence westward all the way round, or to 360°.

CHAPTER VIII
CLIMATE AND WEATHER