Map of North America, showing the parts under water in the Tertiary Era; the vertically lined is the Eocene. (From Dana’s “Manual of Geology.”)
A similar rising from the sea fell to the lot of Europe, though it has not been detailed with so much care. The skeleton of that continent was at the beginning of depositary time much what it is to-day, but a great inland sea occupied the centre of it, which, as time went on, was gradually silted in and evaporated away, notably during the Upper Silurian period.
From all this it is pretty clear that, side by side with alternating risings and sinkings of the land, there was a tolerably steady gain in the contest by which dry ground dispossessed the sea. We may, of course, credit this to a general deepening of the ocean bottoms due to crumpling of the crust, but we may also impute it to a loss of water, and that the latter is, at least for a part, in the explanation the condition of the Moon and Mars makes probable.
Paleontology has the same story of reclamation to tell as geology, and with as much certainty, though its evidence is circumstantial instead of direct and speaks for the growing importance of the land in the globe’s economy since the beginning of depositary time, and thus inferentially to its increasing extent. Fossil remains of the plants and creatures that have one after the other inhabited the earth show that the land has been steadily rising both in floral and faunal estimation as a habitat from the earliest ages to the present day. The record lies imprinted in the strata consecutively laid down, and except for gaps reads as directly on in bettering domicile as in evolutionary development.
In Archæan times we find no undisputed evidence of life either vegetal or animal. But beds of graphite and of limestone point to the possible existence of both. Even anthracite has been found in Archæan rocks in Norway and also in Rhode Island. Whether Dawson’s Eozoon Canadense be a rhizopod or a crystal, doctors of science disagree. Dana, while admitting nothing specific, deems it antecedently probable that algæ and later microscopic fungi related to bacteria existed then, living in water well up toward the boiling-point. Indeed, it is practically certain that invertebrate life existed, because of its already well-developed character in the next era. The like antedating is inferable for the whole record of the rocks. Relatively their history is undoubtedly fairly accurate, but absolutely it must be shifted bodily backward into the next preceding era to correspond with fact not yet unearthed.
In the Lower Cambrian, when first the existence of life becomes a certainty, that life, so far as known, was wholly invertebrate and wholly marine; rhizopods (probably), sponges and corals, echinoderms, worms, brachiopods, mollusks, and crustaceans grew amid primitive seaweed and have left their houses in the shape of shells while perishing themselves. Their tracks too have thus survived. The trilobites, crustaceans somewhat resembling our horseshoe crab, were the lords of the Cambrian seas and marked the point to which organic evolution had then attained. Their aquatic character as well as their simple type is shown by their thoracic legs having each a natatory appendage.
In the next era, the Lower Silurian, the fauna and flora were still marine, although of a higher order than before, and in the Trenton period, the upper part of the era, the earliest vertebrates, fishes, come upon the scene: ganoids and possibly sharks. Nothing terrestrial of this period has yet with certainty been unearthed in America. Europe would seem to have either been more advanced then or better studied since, for there the first plant higher than a seaweed has been dug up, one of a fresh-water genus betokening the land; while in keeping with this the first insect, an hemipter, also has been disinterred. Both the geography and the life of the Eopaleozoic period Dana styles “thalassic.”
Neopaleozoic time, beginning with the Upper Silurian, marked the emergence of the continents, and following them the emergence of life from the water on to this land. In the lower beds of the Upper Silurian in America we find only the aquatic forms of previous strata, but in a higher one we come in marshes upon plants related to the equiseta or horsetails. In England land plants appear for the first time in these latest Silurian beds and in the schists of Angers have been preserved ferns. In both the old world and the new fossil fishes are found and the oldest terrestrial species of scorpions. But the great bulk of forms was still marine; corals, crinoids, brachiopods, trilobites constituting the principal inhabitants. At this time the seas were warm, having much the same temperature between 65° and 80° north as between 30° and 45°; the prevalence of a general temperate tropicality being shown by the fact that the common tropical chain corals lived in latitude 82° north.
In the Devonian era, the Old Red Sandstone, fishes grew and multiplied, increasing in size apparently through the era, and in the last period of it reaching their culminating point. These pelagic vertebrates much surpassed in structure the terrestrial population of the time, which was of a low type and consisted of invertebrates such as myriapods, spiders, scorpions, and insects; for the land was only making. In the mid-Devonian, forests of a primitive kind covered such country as there was, an amphibious land, composed of jungles and widespread marshes. Tree ferns made the bulk of the vegetation, but among them grew also cycads and yews. Mammoth may-flies flitted through the gloom of these old forests, but no vertebrate as yet had left the sea.