Showing seasonal change.
II.

Seasonal changes seemed the only thing to account for the phenomena. And in a general sense this was undoubtedly the explanation. To learn more about the matter, to verify it if it existed, and to particularize it if possible, I determined to undertake an investigation permitting of quantitative precision in the case. A method of doing this occurred to me which would yield results deserving of consideration from the amount of data upon which each was based and capable of being compared with one another upon an equal footing from which relative information could be derived. It seemed wise to determine from the drawings the degree of visibility of a given canal at different seasons of the Martian year, and then to do this for every important canal during the same period of time. The great number of the drawings suggested this use to which they might be put. For from a great accumulation of data a set of statistics on the subject could be secured in which accident or bias would be largely eliminated and the telling effect of averages make itself felt.

To render this possible it was necessary that the drawings should be alike numerous, consecutive, and extended in time. These conditions were fulfilled by the drawings made by me at the opposition of 1903. Three hundred and seventy-two drawings had then been secured, and they covered between them a period of six months and a half. They were also as consecutive as it was possible to secure. During a part of the period the planet was seen and drawn at every twenty-four hours, from April 5, namely, to May 26, or for forty-six consecutive days. Though the rest of the time did not equal this perfection, no great gap occurred, and one hundred and forty-three nights were utilized in all. Furthermore, as these drawings were all made by one man, the personal equation of the observer—a very important source of deviation where drawings are to be compared—was eliminated.

But even this does not give an idea of the mass of the data. For by the method employed about 100 drawings were used in the case of each canal, and as 109 canals were examined this gave 10,900 separate determinations upon which the ultimate result depended. That each of these determinations was independent of the others will appear from a description of the method itself on which the investigation was conducted. To understand that method one must begin a little way back.

As the two planets, Mars and the Earth, turn on their axes the parts of their surfaces they present to each other are constantly changing. For a feature on Mars to be visible from a given post on earth, observer and observed must confront each other, and, furthermore, it must be day there when it is night here. But, as Mars takes about forty minutes longer to turn than the Earth, such confronting occurs later and later each night by about forty minutes, until finally it does not occur at all while Mars is suitably above the horizon; then the feature passes from sight to remain hidden till the difference of the rotations brings it round into view again. There are thus times when a given region is visible, times when it is not, and these succeed each other in from five to six weeks, and are called presentations. For about a fortnight at each presentation a region is centrally enough placed to be well seen; for the rest of the period either ill-placed or on the other side of the planet.

If a marking were always salient enough it would appear in every drawing made of the disk during the recurrent fortnights of its display. If it were weaker than this, it might appear on some drawings and not on others, dependent upon its own strength and upon the definition at the moment, and we should have a certain percentage of visibility for it at that presentation. While if it changed in strength between one presentation and the next, the percentage of its recording would change likewise. Definition of course is always varying, but if its value be noted at the time of each drawing this factor may be allowed for more or less successfully. Making such allowance, together with other corrections to produce extrinsic equality, such as the planet’s distance, which we need not enter upon here, we are left with only the marking’s intrinsic visibility to affect the percentages; that is, the percentages tell of the changes it has successively undergone and give us a history of its wax and wane.

From drawings accurately made it is possible to add to the accuracy of the percentage by noting in each, not only the presence or absence of the marking, but the degree of strength with which it is represented. This was done on the final investigation in the present case, and it was interesting to note how little difference it made in the result.

The longitude of each canal was known, and the longitude of the central meridian of each drawing was always calculated and tabulated with the drawing, so that it was possible to tell which drawings might have shown the canal. Only when the position of the canal was within a certain number of degrees of the centre of the drawing (60°) was the drawing used in the result, allowance being duly made for the loss upon the phase side. Each drawing, it should be remembered, was as nearly an instantaneous picture of the disk as possible. It covered only a few minutes of observation, and was made practically as if the observer had never seen the planet before. In other words, the man was sunk in the manner. Such mental effacement is as vital to good observation as mental assertion is afterward to pregnant reasoning. For a man should be a machine in collecting his data, a mind in coördinating them. To reverse the process, as is sometimes done, is not conducive to science.

When the successive true percentages of visibility of a given canal had thus been found, they were plotted vertically at points along a horizontal line corresponding in distance from the origin to the number of days after (or before) the summer solstice of the Martian northern hemisphere. The horizontal distance thus measured the time while the vertical height gave the relative visibility. The points so plotted were then joined by a smooth curve. This curve reproduced the continuous change in visibility undergone by the canal during the period under observation. It gave a graphic picture of the canal’s change of state. It seemed, therefore, proper to call it the canal’s cartouche or sign manual.