This discovery enabled elliptic elements to be computed for it, when the surprising fact appeared that it was not moving in anything approaching the orbit either Leverrier or Adams had assigned. Instead of a mean distance of 36 astronomical units or more, the stranger was only at 30. The result so disconcerted Leverrier that he declared that “the small eccentricity which appeared to result from Mr. Walker’s computations would be incompatible with the nature of the perturbations of the planet Herschel,” as he called Uranus. In other words, he expressly denied that Neptune was his planet. For the newcomer proceeded to follow the path Walker had computed. This was strikingly confirmed by Mauvais’ discovering that Lalande had observed the star on the 8th of May as well as on the 10th, but because the two places did not agree, he had rejected the first observation, and marked the second as doubtful, thus carefully avoiding a discovery that actually knocked at his door.

Meanwhile Peirce had made a remarkable contribution to the whole subject. In a series of profound papers presented to the American Academy, he went into the matter more generally than either of the discoverers, to the startling conclusion “that the planet Neptune is not the planet to which geometrical analysis had directed the telescope, and that its discovery by Galle must be regarded as a happy accident.”[12] He proved this first by showing that Leverrier’s two fundamental propositions,—

1. That the disturber’s mean distance must be between 35 and 37.9 astronomical units;

2. That its mean longitude for January 1, 1800, must have been between 243° and 252°,—

were incompatible with Neptune. Either alone might be reconciled with the observations, but not both.

In justification of his assertion that the discovery was a happy accident, he showed that three solutions of the problem Leverrier had set himself were possible, all equally complete and decidedly different from each other, the positions of the supposed planet being 120° apart. Had Leverrier and Adams fallen upon either of the other two, Neptune would not have been discovered.[13]

He next showed that at 35.3 astronomical units, an important change takes place in the character of the perturbations because of the commensurability of period of a planet revolving there with that of Uranus. In consequence of which, a planet inside of this limit might equally account for the observed perturbations with the one outside of it supposed by Leverrier. This Neptune actually did. From not considering wide enough limits, Leverrier had found one solution, Neptune fulfilled the other.[14] And Bode’s law was responsible for this. Had Bode’s law not been taken originally as basis for the disturber’s distance, those two great geometers, Leverrier and Adams, might have looked inside.

This more general solution, as Peirce was careful to state, does not detract from the honor due either to Leverrier or to Adams. Their masterly calculations, the difficulty of which no one who has not had some experience of the subject can appreciate, remain as an imperishable monument to both, as does also Peirce’s to him.