In front of the exopodites and endopodites lie a series of structures which Walcott has called exites, but for which I can see another explanation. Walcott has shown them as four broad rounded lobes, but his figure must be looked upon as a drawing and not as a photograph, for it has been very much retouched.

For convenience of discussion, these lobes may be called Nos. 1, 2, 3, and 4, the last being the posterior one ([fig. 5]). This lobe is best shown on the matrix, where the anterior end is seen to be margined by stout spines, while the posterior end lies over the endopodite and under the exopodite behind it. No. 3 is sunk below the level of the others, and only a part of it has been uncovered. Its margin bears strong spines of different sizes. Its full shape can not be made out, but it has neither the shape nor the form of spines shown in figure 3, plate 20 (1918). Lobes 2 and 1 and another lobe in front of 1 seem to form a continuous series and to be part of a single appendage. They are all in one plane, arc so continuous that the joints between them can be made out with difficulty and if they do belong together, can easily be explained.

Fig. 5.—A sketch of the so-called exites of Neolenus serratus (Rominger), to show the form and the character of the spines. × 2. Fig. 6.—Endopodite of a cephalic appendage of Neolenus serratus (Rominger), showing the very broad coxopodite. × 2.

Before calling these structures new organs not previously seen on trilobites, it is of course necessary to inquire if they can be interpreted as representing any known structures. That they can not be exopodites is obvious, since they are bordered by short stout spines instead of setæ. The same stout spines that negate the above possible explanation at once suggest that they are coxopodites (compare [fig 6]). At first sight, the so-called exites seem too wide and too rounded to be so interpreted, but if reference be had to the specimens rather than the figures, it will be noted that the only well preserved structure (No. 2) is longer than wide, has spines only on one side and one end, and does not differ greatly from the coxopodite of specimen No. 58589 (pl. 18, 1918). If structures 2, 1, and the segment ahead of 1 are really parts of one appendage, it can only be an endopodite, of which No. 2 is the coxopodite, No. 1 the basipodite, and the next segment the ischiopodite. If one looks carefully, there are no traces of spines on either end of No. 1, but only on the margin. The extreme width of No. 2 is against this interpretation as a coxopodite (see, however, [fig. 6]), but it may be rolled out very flat, as this is an unusually crushed specimen. No. 2 is 10 mm. long and 6 mm. wide at the widest point. No. 1 is 5 mm. long and 3.5 mm. wide.

The crucial point in this determination is whether 2 and 1 are parts of the same appendage. I believe they are, but others may differ.

Specimen No. 65513.

Illustrated: Walcott, Smithson. Misc. Coll., vol. 57, 1912, pl. 45, fig. 3;—Ibid., vol. 67, 1918, pl. 16, figs. 1, 2.

This is nearly all of the right half of an entire specimen, but the only appendages of any interest are those of the cephalon. Five endopodites emerge from beneath that shield, but as all are displaced it is not possible to say how many belong to the head. When held at the proper angle to the light, the second and third from the front show faintly the partial outlines of the coxopodites. The anterior side and end of the best preserved one shows irregular stout spines of unequal sizes, and the inner end is truncated obliquely ([fig. 6]). These coxopodites are like those on the thorax of specimen No. 58589, but shorter and wider. This of course suggests that the "exite" No. 2 of specimen No. 65515 may be a cephalic coxopodite. The endopodite of this appendage, like the others on this cephalon, is shorter and stouter than the thoracic or pygidial endopodites of the others described.