In the particular case of the Trinucleidæ, which were burrowers, the spine is present on only the oldest and most primitive of the group, a form which has only a most rudimentary fringe. It is obvious from the large size of the pygidium in the larval trinucleid that this family is derived from a group of free swimmers. Trinucleoides reussi was perhaps in the transitional stage, just leaving the swimming mode of life, and belonged to a group which had not developed any other "statocyst" than the median spine. Among the later Trinucleidæ the spine became a vestigial tubercle, and in some cases entirely disappeared. A similar history can be traced in the Cheiruridæ, starting from some such forms as the American Lower Ordovician Nieszkowskia (N. perforator p. ex.).

Another example of a median spine instead of a tubercle is in Goldius rhinoceros (Barrande). Since this species is not from the oldest Goldius-bearing rocks, but from the Lower Devonian, it does not follow what seems to be the general rule, but makes an interesting exception. Goldius rhinoceros (Barrande) (Supplement, 1872, pl. 9, figs. 12, 13) has the median tubercle elevated into a stubby, recurved spine very suggestive of the horn of a rhinoceros. Since the eyes of this species are very well developed, there seems no especial reason for the elevation of a parietal eye, and the example certainly does not support that interpretation.

3. This tubercle is essentially similar to other tubercles on the median line of cephalon, thorax, and even pygidium. This has been discussed sufficiently under section 1 above, but it may perhaps be justifiable to point out that in some of the Agnostidæ there is a median tubercle on both shields, and since it has not yet been demonstrated beyond question which shield is the cephalon, to say which one is a parietal eye and which one is a tubercle is impossible. In other words, the parietal eye can not be differentiated from any other tubercle except by its position.

4. One of the as yet unexplained features of the protaspis of trilobites is the absence of the "nauplius eye." Beecher (1897 B, p. 40) explained this on the ground of the extremely small size of the protaspis and the imperfection of the preservation. If the median tubercle were really a median eye, it should be present in the protaspis and the earlier stages of the ontogeny, even if not in the adult, and should certainly appear before the compound eyes. (In Limulus, however, the compound eyes appear first.) The median eye has not so far been seen in any young trilobite in any stage previous to that in which compound eyes are present. The full ontogeny is not known of any species with compound eyes in which the median tubercle is present in the adult, but theoretically the median eye should be most prominent in the young of just those primitive trilobites about whose development most is known.

NERVOUS SYSTEM.

There has been a rather general impression among students of trilobites that the eye-lines, which should be differentiated from the genal cæca, denote the course of the optic nerves, but no other evidence of the nervous system has been found, save the so called nervures which have been discussed above. In Apus the nerves leading to the eyes come off from the anterior ganglion or "brain" and run directly to the eyes. If conditions were similar in the trilobites, the "brain" was beneath the anterior glabellar lobe, provided, of course, that the eye-lines do indicate the course of the optic nerve.

The ontogenetic history of the eye-lines of trilobites with compound eyes is instructive, and has already been discussed by Lindstroem (1901, pp. 12-25), but he did not cite the case of Ptychoparia, which is particularly interesting, because in this genus both eye-lines and "nervures" are present. Beecher (1895 C, p. 171, pl. 8, figs. 5-7) has shown that in Ptychoparia kingi the eye-lines of a specimen in the metaprotaspis stage run forward at a low angle with the glabella, while in the adult their course is nearly at right angles to it. They have therefore swung through an arc of at least 60 and in so doing have had ample opportunity to become coincident with the primary trunks of the genal cæca. Once that was accomplished, it is quite likely that the one fold in the shell would continue to house both structures. In other trilobites, there is a similar backward progression of the eye-lines.

As would be expected, the ventral ganglia and the longitudinal cords left no trace in the test. Since each segment has appendages, there was probably a continuous chain of ganglia back to the posterior end of the pygidium.

VARIOUS GLANDS.

Dermal glands.—The surface of many trilobites is "ornamented" with pustules and spines which on sectioning are nearly always found to be hollow, and in many cases have a fine opening at the tip. While it is generally believed that the purpose of these spines was protective, yet it is possible that many of them were merely outgrowths which increased the area through which the respiratory function could be carried on. It will be recalled that most of the smooth trilobites are punctate, some of them very conspicuously so, and the spines and pustules of ornamented trilobites may merely subserve the same function as the pores of smooth ones.