This prophecy was fulfilled by the discovery of the specimens which Walcott described as Pædeumias transitans, a species which is said by its author to be a "form otherwise identical with O. thompsoni, [but] has rudimentary thoracic segments and a Holmia-like pygidium posterior to the fifteenth spine-bearing segment of the thorax." A good specimen of this form was found at Georgia, Vermont, associated with the ordinary specimens of Olenellus thompsoni, and I believe that it is merely a complete specimen of that species. Olenellus gilberti, which was formerly supposed to have a limuloid telson, has now been shown by Walcott (Smithson. Misc. Coll., vol. 64, 1916, p. 406, pl. 45, fig. 3) to be a Mesonacis and to have seven or eight thoracic segments and a small plate-like pygidium back of the spine-bearing fifteenth segment. All indications are that the spine was not in any sense a pygidium. Walcott states that Olenellus resulted from the resorption of the rudimentary segments of forms such as Mesonacis and Pædeumias, leaving the spine to function as a pygidium. This would mean the cutting off of the anus and the posterior part of the alimentary canal, and developing a new anal opening on the spine of one of the thoracic segments!

If the spine of the fifteenth segment is not a pygidium, could it be used, as Dollo postulates, as a pushing organ? Presumably not, for though in entire specimens of Olenellus (Pædeumias) it extends back beyond the pygidium, it probably was borne erect, like the similar spines in Elliptocephala, and not in the horizontal plane in which it is found in crushed specimens.

While this removes some of the force of Dollo's argument, his conclusion that Olenellus was a crawling, burrowing animal living in well lighted shallow waters was very likely correct. The long, annelid-like body indicates numerous crawling legs, there is no swimming pygidium, and the fusion of the cheeks in the head makes a stiff cephalon well adapted for burrowing.

Staff and Reck have pointed out that Dalmanites limulurus was not entirely a crawler, but, as shown by the large pygidium, a swimmer as well. This kind of trilobite probably represents the normal development of the group in Ordovician and later times. The Phacopidæ, Proëtidæ, Calymenidæ, and other trilobites of their structure could probably crawl or swim equally well, and could escape enemies by darting away or by "digging themselves in."

Cryptolithus tessellatus (Trinucleus concentricus) is cited by Dollo as an example of an adaptation to life in the aphotic benthos, permanently buried in the mud. In this case he appealed to Beecher's interpretation of the appendages, and pointed out that while the adult is blind, the young have simple eyes and probably passed part of their life in the lighted zone. It needs only a glance at the very young to convince one that the embryos had swimming habits, so that in this form one sees the adaptation of the individual during its history to all modes of life open to a trilobite. The habits of the Harpedidæ may have been similar to those of the Trinucleidæ, but the members of this family are supplied with broad flat genal spines. It has been suggested that these served like pontoons, runners, or snow-shoes, to enable the animal to progress over soft mud without sinking into it. Some such explanation might also be applied to the similar development in the wholly unrelated Bathyuridæ. The absence of compound eyes and the poor development of ocelli in the Harpedidæ suggest that they were burrowers, and from these two families, Trinucleidæ and Harpedidæ, it becomes evident that a pygidial point or spine is not a necessary part of the equipment of a burrowing trilobite. In fact, from the habits of Limulus it is known that the appendages are relied upon for digging, and that the telson is a useful but not indispensable pushing organ.

Deiphon is an interesting trilobite from many points of view. Its pleural lobes are reduced to a series of spines on either side of the body, and its pygidium is a mere spinose vestige. Dollo considered this animal a swimmer in the euphotic zone, because its eyes are on the anterior margin, its body depressed, its glabella globose, and its pygidium flat and spinose. That such a method of life was secondary in a cheirurid was indicated to him by the fact that the more primitive members of the family seemed adapted for crawling. Staff and Reck have gone further and shown that the pygidium is only the vestige of a swimming pygidium, and that the great development of spines suggests a floating rather than a swimming mode of life. They therefore argue for a planktonic habitat. A similar explanation is suggested for Acidaspis and other highly spinose species.

The Aeglinidæ, or Cyclopygidæ as they are more properly called, present the most remarkable development of eyes among the trilobites. In this, Dollo saw, as indeed earlier writers have, an adaptation to a region of scanty light. The cephalon is not at all adapted to burrowing, but the pygidium is a good swimming organ, and one is apt to agree that this animal was normally an inhabitant of the ill lighted dysphotic region, but also a nocturnal prowler, making trips to the surface at night. Similar habits and habitat are certainly indicated for Telephus and the Remopleuridæ, but whether Nileus and the large-eyed Bumastus are capable of the same explanation is doubtful.

Finch (1904, p. 181) makes the suggestion that "Nileus" (Vogdesia) vigilans, an abundant trilobite in the calcareous shale of the Maquoketa, was in the habit of burying itself, posterior end first. He found a slab containing fifteen entire specimens, all of which had the cephalon extended horizontally near the surface of the stratum, and the thorax and pygidium projecting downward. The rock showed no evidence that they were in burrows, and the fact that all were in the same position indicates that the attitude was voluntarily assumed. They appear to have entrenched themselves by the use of the pygidia, which are incurved plates readily adapted for such use, and, buried up to the eyes, awaited the coming of prey, but were, apparently, smothered by a sudden influx of mud. The form of the eye in Vogdesia vigilans bears out this supposition of Finch's. Not only are the eyes unusually tall, but the palpebral lobe is much reduced, so that many of the lenses look upward and inward, as well as outward, forward and backward. The particular food required by V. vigilans must have been very plentiful in the Maquoketa seas of Illinois and Iowa, for the species was very abundant, but that its habits were self-destructive is also shown by the great number of complete enrolled specimens of all ages now found there. The soft mud was apparently fatal to the species before the end of the Maquoketa, for specimens are seen but very rarely in the higher beds.

Vogdesia vigilans is shaped much like Bumastus, Illænus, Asaphus, Onchometopus, and Brachyaspis, and it may be that these trilobites with incurved pygidia had all adopted the habit of digging in backward. As noted above, their pygidia are not very well adapted for swimming, and most of them have large or tall eyes.

Dollo's comparison of the Cyclopygidæ to the huge-eyed modern amphipod Cystosoma is instructive. This latter crustacean, which has the greater part of the dorsal surface of the carapace transformed into eyes, is said to live in the dysphotic zone, at depths of from 40 to 100 fathoms, and to come to the surface at night. It swims ventral side down.