While no one having any real knowledge of the Trilobita has adopted Lankester's scheme of the inclusion of the group as the primitive grade in the Arachnida, reference to it may not be amiss. This theory is best set forth in the Encyclopædia Britannica, Eleventh Edition, under the article on Arachnida. It is there pointed out that the primitive arachnid, like the primitive crustacean, should be an animal without a fixed number of somites, and without definitely grouped tagmata. As Lankester words it, they should be anomomeristic and anomotagmatic. The trilobites are such animals, and he considers them Arachnida and not Crustacea for the following reasons:

Firstly and chiefly, because they have only one pair (apart from the eyes) of pre-oral appendages. "This fact renders their association with the Crustacea impossible, if classification is to be the expression of genetic affinity inferred from structural coincidence."

Secondly, the lateral eyes resemble no known eyes so closely as the lateral eyes of Limulus.

Thirdly, the trilobation of the head and body, due to the expansion and flattening of the sides or pleura, is like that of Limulus, but "no crustacean exhibits this trilobite form."

Fourthly, there is a tendency to form a pygidial or telsonic shield, "a fusion of the posterior somites of the body, which is precisely identical in character with the metasomatic carapace of Limulus." No crustacean shows metasomatic fusion of segments.

Fifthly, a large post-anal spine is developed "in some trilobites" (he refers to a figure of Dalmanites).

Sixthly, there are frequently lateral spines on the pleura as in Limulus. No crustacean has lateral pleural spines.

These points may be taken up in order.

1. If trilobites have one appendage-bearing segment in front of the mouth, they are Arachnida; if two, Crustacea. This is based on the idea that in the course of evolution of the Arthropoda, the mouth has shifted backward from a terminal position, and that as a pair of appendages is passed, they lose their function as mouth-parts and eventually become simple tactile organs. Thus arise the cheliceræ of most arachnids, and the two pairs of tactile antennæ of most Crustacea. This theory is excellent, and the rule holds well for modern forms, but as shown by the varying length of the hypostoma in different trilobites, the position of the mouth had not become fixed in that group. In some trilobites, like Triarthrus, the gnathobases of the second pair of appendages still function, but in all, so far as known, the mouth was back of the points of attachment of at least two pairs of appendages, and in some at least, back of the points of attachment of four pairs. As pointed out in the case of Calymene and Ceraurus, the trilobites show a tendency toward the degeneration of the first and second pairs of biramous appendages, particularly of the gnathobases. They are in just that stage of the backward movement of the mouth when the function of the antennæ as mandibles has not yet been lost. If the presence of functional gnathobases back of the mouth, rather than the points of attachment in front of the mouth, is to be the guide, then Triarthrus might be classed as an arachnid and Calymene and Isotelus as crustaceans. In other words, the rule breaks down in this primitive group.