Vogel's Device
In 1847, A. F. Vogel, of Leipzig, invented what he called
"Hydrostatic General Mobile."
It was described at the time in a pamphlet, and its operation is sufficiently illustrated by the following annexed figure and explanation:
A water-wheel, A, B, C, D, raising the water by means of which it is to be operated. This is effected, he supposes, by the wheel acting at A, by the pressure of one of six pins D, on a vertical rod, attached to a horizontal beam, working on a centre, and its opposite end being secured to the pump-rod of the barrel M, N. The projector has an idea that by means of flaps, which close the cells of the wheel as they pass under rollers at B, while at C there is a similar contrivance to open the flaps and let out the water, and therefore by its retention on the descending side it will become more effective in turning the wheel.
A Water Wheel-Driven Pump
This device is claimed by the writer to be an adaptation of Rangely's Patent Roller Pump. A description by the writer, whose name is not given, was published in Mechanics' Magazine, 1823, in the following language:
I think it possible to produce a self-moving power by such a machine as that, a drawing of which is now prefixed. From its very simple construction, a very brief description is necessary. A represents a pump immersed in a reservoir B; the pump is worked by the rotary motion of the water-wheel C, which is four feet in diameter. On the shaft of the water-wheel is the drum-wheel D, working by a small cord the wheel E, on the axis of the pump discharging the water by the pipe F into a reservoir G over the water-wheel. In this reservoir is a cock to regulate the quantity of water to be discharged on the wheel. The wheel on the shaft of the water-wheel being nine inches diameter, and the wheel on the axis of the pump three in diameter, the latter will consequently make three revolutions for one of the water-wheel. As the pump is not required to turn with great velocity, the speed might be regulated by the quantity of water thrown on the water-wheel, the latter being four feet in diameter, and the wheel on its shaft nine inches; consequently the radius or arm of the wheel has near 4½ powers to counteract the friction of the axis of the pump and water-wheel, and of a fine cord passed over the wheels D and E. If necessary, the friction of the machine might be still farther reduced by the axes of the pump and water-wheel being made to run in gudgeons with friction rollers.
The pipe H is intended to convey the surplus water from the reservoir over the wheel to the reservoir below.
The pump might easily be turned by a cog-wheel; but this is unnecessary, as the cord passing over the drum-wheels will do equally well, and is, besides, a more simple method.
"A Journeyman Mechanic's" Device
The gentleman, whose real name is unknown, but who styled himself "A Journeyman Mechanic," made an invention, an account of which appeared in "Mechanics' Magazine," in 1831. It was an attempted adaptation of the wellknown principles of Barker's Mill.

