A revolving fly wheel will run machinery for some time after the application of force has ceased. This is doing work, and represents energy.
A bullet fired from a gun will accomplish destruction before having its motion arrested. This is work—energy.
If a boy throw a ball into a snow bank, its motion will sink it into the snow, but not far, the resistance of the snow will soon bring the ball to rest. The ball overcomes resistance in passing through the snow until it is brought to rest, and thus it does the work of forcing itself through the snow, and possesses the energy necessary to do that work.
The overcoming of the resistance of the air by a moving body is work. A steamboat will move for some time in water after the steam has been turned off. The overcoming of the resistance of the water is work, and by virtue of the motion of the boat when the steam was turned off it possessed the energy to do the work of forcing itself for some time through the resistance of the water.
The Perpetual Motion worker in each case had reasoned himself into this conclusion: That the same energy will impart the same acceleration of velocity, regardless of the velocity at the beginning of the application of energy. That the same amount of energy or work necessary to impart to a body a velocity of ten feet per second will increase that velocity to twenty feet per second, or from twenty feet per second to thirty feet per second. In other words, that the same amount of energy, and only the same amount of energy is required for a given increase in velocity without regard to the initial velocity. This appears plausible, and almost self-evident. We believe the great majority of people, other than mechanical engineers would, upon presentation of the theory accept it as axiomatic, and as a matter of course. The fallacy becomes manifest only from a critical and technical examination of the Laws of Momentum and Energy.
The Perpetual Motion worker had learned from his text-books that if the velocity be doubled, the energy would be multiplied by four. His idea was to so arrange his mechanism that he would apply the amount of energy to move a fly wheel free to revolve, from a position of rest to a revolving velocity of ten revolutions per second. Then apply again the same amount of energy, and accelerate that velocity from ten revolutions per second to twenty revolutions per second. Thus, the energy at the end of the second second would be four times what it was at the end of the first second. But to make it so, only double the amount of energy had been applied that had been expended at the end of the first second. Thus, he reasoned, his machine was by virtue of its structure, accumulating energy, and this energy could be used one-half to continue the motion of his machine, and the other half to run other machinery, or for any other purpose for which energy might be desired.
Wherein lies the fallacy of this supposition?
We will now endeavor to explain. And for the young student to get the explanation fully, it will be necessary for him to pay the closest attention to what we here state.
A force, for instance the pressure of the finger or the hand, equal to one pound against a body free to move, will, we will say, move that body in one second of time through a space of ten feet, and at the end of that second the body will have a velocity of twenty feet. It is manifest that at the end of the second the velocity will be twenty feet per second for its initial velocity is zero, and its average velocity ten feet per second, the acceleration being, of course, presumed uniform.
Now, it is not true as the Perpetual Motion worker had assumed that the same energy—i. e., the same work that is required to increase the velocity from zero to ten feet per second will increase the velocity from ten feet per second to twenty feet per second, and in that assumption lay the fallacy of our friends who were thus seeking Perpetual Motion.