A trifling incident revealed to an Italian savant the fact that when two metals and the leg of a frog came into contact the muscles of the leg contracted. The galvanic battery resulted. Years later another observer discovered that if a wire carrying a current of electricity was wound around a piece of soft iron the latter became a magnet. Out of these simple discoveries have arisen the telegraph, the telephone, and a host of inventions depending upon electricity. And to-day, with all the wonders accomplished in this field, we are yet upon the threshold of the enchanted palace that electricity is about to open to us. Through its aid we shall one day enjoy light, heat, and power almost as freely as we now enjoy air. The crops will be planted, watered, cultivated, gathered, and transported to the uttermost ends of the earth by electricity. The steam-engine is said to do the work of two hundred million men, and to have been the chief agent in reducing the average working hours of men in the civilized world in this century from fourteen hours a day to ten. But electricity, according to even conservative judges, will accomplish infinitely more. It will make possible the harnessing of vast forces of nature, such as the falls of Niagara, because the electric current can be transported from place to place at small cost and it is easily transformed into light or power or heat. Within a few months we shall see the first results of the great work at Niagara. Before many years the power of the tides is certain to be used along the seaboard for producing electricity. Here is a force equal to that of a million Niagaras going to waste.

The late Clerk Maxwell, when asked by a distinguished scientist what was the greatest scientific discovery of the last half-century, replied: "That the Gramme machine is reversible." In other words, that power will not only produce electricity, but that electricity will produce power. By turning a big wheel at Niagara we can produce an electric current that will turn another wheel for us fifty, or perhaps five hundred miles away. The dynamo is one of the great achievements of the day to which Charles F. Brush, of Cleveland, O., has devoted himself with much signal success. Brush was born in March, 1849, in Euclid Township near Cleveland, and his early years were spent on his father's farm. When fourteen years old he went to the public school at Collamer, and later to the Cleveland High-school, and as early as 1862 distinguished himself by making magnetic machines and batteries for the high-school. During his senior year in the high-school, the chemical and physical apparatus of the laboratory of the school was placed under his charge. In this year he constructed an electric motor having its field magnets as well as its armature excited by the electric current. He also constructed a microscope and a telescope, making all the parts himself, down to the grinding of the lenses. He devised an apparatus for turning on the gas in the street-lamps of Cleveland, lighting it and turning it off again. When he was eighteen years of age he entered Michigan University at Ann Arbor, and, following his particular bent, was graduated as a mining engineer in 1869, one year ahead of his class. Returning to Cleveland he began work as an analytical chemist and soon became interested in the iron business. In 1875 Brush's attention was first called to electricity by George W. Stockly, who suggested that there was an immense field ready for a cheaper and more easily managed dynamo than the Gramme or Siemens, the best types then known. Stockly, who was interested in the Telegraph Supply Company, of Cleveland, agreed to undertake the manufacture of such a machine if one was devised. In two months Brush made a dynamo so perfect in every way that it was running until it was taken to the World's Fair in 1893. Having made a good dynamo, the next step was a better lamp than those in use. Six months of experimenting resulted in the Brush arc light. Stockly was so well satisfied with the commercial value of these inventions that the Telegraph Supply Company, a small concern then employing about twenty-five men, was reorganized in 1879, as the Brush Electric Company. In 1880 the Brush Company put its first lights into New York City, and it has since extended the system until there is scarcely a town in the country where the light may not be found. Besides dynamos and lamps, the immense establishment at Cleveland employs its twelve hundred men in making carbons, storage-batteries, and electro-plating apparatus. Mr. Brush is a self-taught mechanic, able to do any work of his shops in a manner equal to that of an expert. He is intensely practical, never over-sanguine, and an excellent business man. If a delicate piece of work is to be done for the first time, he will probably do it with his own hands. He is not fond of experiment for the experiment's sake; he wants to see the practical utility of the aim in view before devoting time to its attainment. Of the scores of patents he has taken out, two-thirds are said to pay him a revenue. In 1881, at the Paris Electrical Exposition, Brush received the ribbon of the Legion of Honor. In personal appearance there is nothing of the round-shouldered, impecunious, studious inventor about him. He is six feet or more in height, and so fine a specimen of manhood that Gambetta, the French statesman, once remarked that the man impressed him quite as much as the inventor.

Eickemeyer and His Motor.

Rudolph Eickemeyer.

In the same field of electricity, as applied to every-day life, a Bavarian by birth, but an American by adoption, Rudolf Eickemeyer, of Yonkers, has done some valuable work in devising a useful form of dynamo. His machines are now used almost exclusively for elevators and hoisting apparatus, one large firm of elevator builders having put in no less than six hundred Eickemeyer motors within the last four years. As electricity becomes more and more useful for small powers, such as lathes, pumps, and elevators, an effective and simple motor becomes of the utmost importance. Rudolf Eickemeyer was born in October, 1831, at Kaiserslautern, Bavaria, where his father was employed as a forester. He was educated at the Darmstadt Polytechnic Institute and at once showed a predilection for scientific work. When still a boy he joined the Revolutionists under Siegel, and after the upheaval of 1848 came here with Siegel, Carl Schurz, and George Osterheld, the latter afterward becoming his partner. The young man's first work here was as an engineer on the Erie Railroad line, then building. In 1854 he established himself in Yonkers in the business of repairing the tools used in the many hat-shops of that already flourishing city. The next twenty years of his life were devoted to inventions and improvements in every branch of hat-making. His shaving-machines, stretchers, blockers, pressers, ironers, and sewing-machines substituted mechanism for laborious and slow methods of hand work. At the beginning of the war Eickemeyer was quick to see the opportunity for turning his factory to other uses, and vast quantities of revolvers were made there. When that industry declined, he took up the manufacture of mowing-machines, having invented a driving mechanism for such machines that met with wide favor. The introduction of the Bell telephone in Yonkers first turned Eickemeyer's attention to electricity, and for the last ten years he has devoted himself almost exclusively to the invention and manufacture of electric motors. His first successful invention in this field was a dynamo to furnish light for railroad trains. From this he was led to the invention of a dynamo capable of doing effective work at much lower speed than that usually employed, and this has proved to be his most valuable achievement. Some improvements in winding the armatures have also been accepted as valuable and adopted by other manufacturers. In connection with storage batteries Mr. Eickemeyer has also done a good deal of interesting work. But he is chiefly known to the electrical world as the inventor of a most useful dynamo for power purposes. For the last forty years he has been one of the men who have most aided in the growth of Yonkers, taking great interest in all questions pertaining to its government and school system. He was married in 1856 to Mary T. Tarbell, of Dover, Me., and his eldest son, Rudolf Eickemeyer, Jr., is associated with him in business.

George Westinghouse, Jr., and the Air-brake.