Now, the increase of the shell in the Univalves is performed almost exactly as in the Bivalves; namely, by the protrusion and eversion of the mantle on the existing edge. And, therefore, each of these thorny ridges, separated as they are by an interval of just two-thirds of a whorl, marks the termination of a new growth, the shelly matter rising up at the margin in this thickened ridge, which bristles with elongated points.
In this specimen we can trace ten such ridges, whence we legitimately infer ten distinct periods through which this animal has passed, besides the nautiloid stage under which all the creatures of this Class commence existence.
Yet, since each of these three univalves has been this day created, these inferences are deceptive. The Scorpion-shell was never otherwise than dilated and digitated. The Cowry has never had a lip that was not thickened, nor an exterior that was not porcellanous. The Woodcock has never known a moment in which its thorns were less numerous than they are now.
Notice that fine round shell carried along the floor of the sea, by means of a great fleshy tortoiseshell-coloured[75] body, which, with a head of many spreading tentacles applied to the ground, crawls with a tolerably quick progress.[76] It is the Pearly Nautilus.
The amplitude of the beautiful nacreous shell is by no means a measure of the dimensions of the animal; for this merely sits within the shallow mouth, like a Welsh fisherman in his coracle. If we remove the creature, we shall find the cavity bounded by a pearly floor, in the centre of which is a slender tube running down from it. On breaking away this floor, we expose an empty chamber, with a similar pearly floor, through which passes the shelly tube, continued through the middle of the chamber, and running down to the next. Thus we should find the whole interior of the shell occupied by a series of these empty chambers, fifty or upwards in number, each less than its predecessor (rather successor, if we regard them in the order of development), until we can trace them no longer in the minute centre of the spire.
Without dwelling on the function of these chambers, farther than to say that they appear admirably contrived to make the animal with its shell either heavier or lighter than the surrounding fluid, by forcing water into them through the tube, and thus condensing the contained air, or by relaxing the pressure, and allowing the elasticity of the air to exclude the water,—our business is just with the formation of the septa, as an evidence of periodic development.[77]
"The septa are formed periodically, but it must not be supposed that the shell-muscles ever become detached, or that the animal moves the distance of a chamber all at once. It is most likely that the adductors grow only in front, and that a constant waste takes place behind, so that they are always moving onward, except when a new septum is to be formed; the septa indicate periodic rests."[78]
These periodic alternations of rest and action, however, it is obvious, can never have really existed in an organism which has but this instant been created. The appearances, therefore, which indicate them, are illusory, considered as testimonies to actual time.
You are aware that what is often spoke of as the "bone" in this Cuttlefish (Sepia officinalis), is only a concealed shell; and I need not to dissect the animal to acquaint you that it is a highly interesting structure. A deservedly eminent physiologist shall describe it for us.
"The outer shelly portion of this body consists of horny layers, alternating with calcified layers, in which last may be seen a hexagonal arrangement. The soft, friable substance, that occupies the hollow of this boat-shaped shell, is formed of a number of delicate plates, running across it from one side to the other in parallel directions, but separated by intervals several times wider than the thickness of the plates; and these intervals are in great part filled up by what appear to be fibres, or slender pillars, passing from one plate or floor to another. A more careful examination shows, however, that instead of a large number of detached pillars, there exists a comparatively small number of very thin, sinuous laminæ, which pass from one surface to the other, winding and doubling upon themselves, so that each lamina occupies a considerable space. Their precise arrangement is best seen by examining the parallel plates, after the sinuous laminæ have been detached from them; the lines of junction being distinctly indicated upon these. By this arrangement, each layer is most effectually supported by those with which it is connected above and below; and the sinuosity of the thin intervening laminæ, answering exactly the same purpose as the "corrugation" given to iron plates for the sake of diminishing their flexibility, adds greatly to the strength of this curious texture, which is at the same time lightened by the large amount of space between the parallel plates that intervenes between the sinuosities of the laminæ."[79]