The following signs shew that the operation hath succeeded, and that the Iron is changed into good Steel.
This metal being quenched in cold water, as proposed above, acquires such an extraordinary degree of hardness, that it will by no means yield to any impression of the file or hammer, and will sooner break in pieces than stretch upon the anvil. And here it is proper to observe, that the hardness of Steel varies with the manner in which it is quenched. The general rule is, that the hotter the Steel is when quenched, and the colder the water is in which you quench it, the harder it becomes. It may be deprived of the temper thus acquired, by making it red-hot, and letting it cool slowly; for it is thereby softened, rendered malleable, and the file will bite upon it. For this reason the artisans who work in Steel begin with untempering it, that they may with more ease shape it into the tool they intend to make. They afterwards new-temper the tool when finished, and by this second temper the Steel recovers the same degree of hardness it had acquired by the first temper.
The colour of Steel is not so white as that of Iron, but darker, and the grains, facets, or fibres, which appear on breaking it, are finer than those observed in Iron.
If the bars of Iron thus cemented in order to convert them into Steel be too thick, or not kept long enough in cementation, they will not be turned into Steel throughout their whole thickness: their surfaces only will be Steel to a certain depth, and the center will be mere Iron; because the phlogiston will not have thoroughly penetrated them. On breaking a bar of this sort, the difference in colour and grain between the Steel and the Iron is very visible.
It is easy to deprive Steel of the superabundant quantity of phlogiston which constitutes it Steel, and thereby reduce it to Iron. For this purpose it need only be kept red-hot some time, observing that no matter approach it all the while that is capable of refunding to it the phlogiston which the fire carries off. The same end is still sooner obtained by cementing it with meagre hungry matters, capable of absorbing the phlogiston; such as bones calcined to whiteness, and cretaceous earths.
Steel may also be made by fusion; or Pig-iron may be converted into Steel. For this purpose the same method must be employed as was above directed for reducing Pig-iron into malleable Iron; with this difference, that, as Steel requires more phlogiston than is necessary to Iron, all the means must be made use of that are capable of introducing into the Iron a great deal of phlogiston; such as melting but a small quantity of Iron at a time, and keeping it constantly encompassed with abundance of charcoal; reiterating the fusions; taking care that the blast of the bellows directed along the surface of the metal do not remove the coals that cover it, &c. And here it must be observed, that there are some sorts of Pig-iron which it is very difficult to convert into Steel by this method, and that there are others which succeed very readily, and with scarce any trouble at all. The ores which yield the last-mentioned sort of Pig-iron are called Steel Ores. Steel made by this means must be tempered in the same manner as that made by cementation[8].
PROCESS IV.
The Calcination of Iron. Sundry Saffrons of Mars.
Take filings of Iron, in what quantity you please; put them into a broad unglazed earthen vessel; set it under the muffle of a cupelling furnace; make it red-hot; stir the filings frequently; and keep up the same degree of fire till the Iron be wholly turned into a red powder.
OBSERVATIONS.