Mercury is very volatile; vastly more so than the most unfixed metals; moreover, the union it contracts with any metal is not sufficiently intimate to entitle the new compound resulting from that union to all the properties of the two substances united: at least with regard to their degree of fixity and volatility. From all which it follows, that the best and surest method of separating it from metals dissolved by it, is to expose the amalgam to a degree of heat sufficient to make all the Quick-silver rise and evaporate; after which the metal remains in the form of a powder, and being fused recovers its malleability. If it be thought proper to save the Quick-silver, the operation must be performed in close vessels, which will confine and collect the mercurial vapours. This operation is most frequently employed to separate Gold and Silver from the several sorts of earths and sands with which they are mixed in the ore; because these two metals, Gold especially, are of sufficient value to compensate the loss of Mercury, which is inevitable in this process: besides, as they very readily amalgamate with it, this way of separating them from every thing unmetallic is very facile and commodious.
Mercury is dissolved by acids; but with circumstances peculiar to each particular sort of acid.
The vitriolic acid, concentrated and made boiling hot, seizes on it, and presently reduces it to a kind of white powder, which turns yellow by the affusion of water, but does not dissolve in it; it is called Turbith Mineral. However, the vitriolic acid on this occasion unites with a great part of the Mercury, in such a manner that the compound is soluble in water. For if to the water which was used to wash the Turbith a fixed alkali be added, there falls instantly a russet-coloured precipitate, which is no other than Mercury separated from the vitriolic acid by the intervention of the alkali.
This dissolution of Mercury by the vitriolic acid is accompanied with a very remarkable phenomenon; which is, that the acid contracts a strong smell of volatile spirit of sulphur: a notable proof that part of the phlogiston of the Mercury hath united therewith. And yet, if the Mercury be separated by means of a fixed alkali, it does not appear to have suffered any alteration. Turbith mineral is not so volatile as pure Mercury.
The nitrous acid dissolves Mercury with ease. The solution is limpid and transparent, and as it grows cold shoots into crystals, which are a nitrous mercurial salt.
If this solution be evaporated to dryness, the Mercury remains impregnated with a little of the acid, under the form of a red powder, which hath obtained the names of Red Precipitate, and Arcanum Corallinum. This Precipitate, as well as Turbith, is less volatile than pure Mercury.
If this solution of Mercury be mixed with a solution of Copper, made likewise in the nitrous acid, and the mixture evaporated to dryness, there will remain a green powder called Green Precipitate. These precipitates are caustic and corrosive; and are used as such in surgery.
Though Mercury be dissolved more easily and completely by the nitrous acid than by the vitriolic, yet it has a greater affinity with the latter than with the former: for if a vitriolic acid be poured into a solution of Mercury in spirit of nitre, the Mercury will quit the latter acid in which it was dissolved, and join the other which was added. The same thing happens when the marine acid is employed instead of the vitriolic.
Mercury combined with spirit of salt forms a singular body; a metalline salt which shoots into long crystals, pointed like daggers. This salt is volatile, and sublimes easily without decomposition. It is moreover the most violent of all the corrosives hitherto discovered by Chymistry. It is called Corrosive Sublimate, because it must absolutely be sublimed to make the combination perfect. There are several ways of doing this: but the operation will never fail, if the Mercury be rarefied into vapours, and meet with the marine acid in a similar state.