CHAP. II.

Concerning the common Principles of Beings, and of the Mathematical Essence,[72] bound and infinite.

But it is necessary that, considering the principles of the whole mathematical essence, we should return to those general principles, which pervade through and produce all things from themselves, I mean bound and infinite. For from these two after that cause of one, which can neither be explained, nor entirely comprehended, every other thing, as well as the nature of the mathematical disciplines, is constituted. In the former, indeed, producing all things collectively and separately; but in these proceeding in a convenient measure, and receiving a progression in a becoming order; and in some, subsisting among primary, but in others among middle, and in others again among posterior natures. For intelligible genera, by their simplicity of power, are the first participants of bound and infinite: because, on account of their union and identity, and their firm and stable existence, they are perfected by bound: but on account of their division into multitude, their copious power of generation, and their divine diversity and progression, they obtain the nature of infinite. But mathematical genera originate, indeed, from bound and infinite, yet not from primary, intelligible, and occult principles only; but also from those principles which proceed from the first to a secondary order, and which are sufficient to produce the middle ornaments of beings, and the variety which is alternately found in their natures. Hence, in these also, the reasons and proportions advance to infinity, but are restrained and confined by that which is the cause of bound. For number rising from the retreats of unity, receives an incessant increase, but that which is received as it stops in its progression, is always finite. Magnitude also suffers an infinite division, yet all the parts which are divided are bounded, and the particles of the whole exist finite in energy. So that without the being of infinity, all magnitudes would be commensurable, and no one would be found but what might either be explained by words, or comprehended by reason (in which indeed geometrical subjects appear to differ from such as are arithmetical;) and numbers would be very little able to evince the prolific power of unity, and all the multiplex and super-particular proportions which they contain. For every number changes its proportion, looking back upon, and diligently enquiring after unity, and a reason prior to itself. But bound being taken away, the commensurability and communication of reasons, and one and the same perpetual essence of forms, together with equality, and whatever regards a better co-ordination, would never appear in mathematical anticipations: nor would there be any science of these; nor any firm and certain comprehensions. Hence then, as all other genera of beings require these two principles, so likewise the mathematical essences. But such things as are last in the order of beings, which subsist in matter, and are formed by the plastic hand of nature, are manifestly seen to enjoy these two principles essentially. Infinite as the subject seat of their forms; but bound as that which invests them with reasons, figures, and forms. And hence it is manifest that mathematical essences have the same pre-existent principles with all the other genera of beings.

CHAP. III.

What the common Theorems are of the Mathematical Essences.

But as we have contemplated the common principles of things, which are diffused through all the mathematical genera, after the same manner we must consider those common and simple theorems, originating from one science, which contains all mathematical knowledge in one. And we must investigate how they are capable of according with all numbers, magnitudes and motions. But of this kind are all considerations respecting proportions, compositions, divisions, conversions, and alternate changes: also the speculation of every kind of reasons, multiplex, super-particular, super-partient, and the opposite to these: together with the common and universal considerations respecting equal and unequal, not as conversant in figures, or numbers, or motions, but so far as each of these possesses a common nature essentially, and affords a more simple knowledge of itself. But beauty and order are also common to all the mathematical disciplines, together with a passage from things more known, to such as are sought for, and a transition from these to those which are called resolutions and compositions. Besides, a similitude and dissimilitude of reasons are by no means absent from the mathematical genera: for we call some figures similar, and others dissimilar; and the same with respect to numbers. And again, all the considerations which regard powers, agree in like manner to all the mathematical disciplines, as well the powers themselves, as things subject to their dominion: which, indeed, Socrates, in the Republic, dedicates to the Muses, speaking things arduous and sublime, because he had embraced things common to all mathematical reasons, in terminated limits, and had determined them in given numbers, in which the measures both of abundance and sterility appear.

CHAP. IV.

How these Common Properties subsist, and by what Science they are considered.

But it is requisite to believe, that these common properties do not primarily subsist in many and divided forms, nor originate from things many and the last: but we ought to place them as things preceding in a certain simplicity and excellence. For the knowledge of these antecedes many knowledges, and supplies them with principles; and the multitude of sciences subsist about this, and are referred to it as their source. Thus the geometrician affirms, that when four magnitudes are proportional, they shall be alternately proportional; and he demonstrates this from principles peculiar to his science, and which the arithmetician never uses. In like manner, the arithmetician affirms, that when four numbers are proportional, they shall be so alternately: and this he evinces from the proper principles of his science. For who is he that knows alternate ratio considered by itself, whether it subsists in magnitudes or in numbers? And the division of composite magnitudes or numbers, and in like manner, the composition of such as are divided? For surely it cannot be said that there are sciences and cognitions of things divisible: but that we have no science of things destitute of matter, and which are assigned a more intellectual contemplation; for the knowledge of these is by a much greater priority science, and from these the common reasons of many sciences are derived. And there is a gradual ascent in cognitions from things more particular to more universal, till we revert to the science of that which is, considered as it is, abstracted from all secondary properties. For this sublime science does not think it suitable to its dignity, to contemplate the common properties which are essentially inherent in numbers, and are common to all quantities; but it contemplates the one, and firm essence of all the things which are. Hence, it is the most capacious of all sciences, and from this all the rest assume their own peculiar principles. For the superior sciences always afford the first suppositions of demonstrations to such as are subordinate. But that which is the most perfect of all the sciences, distributes from itself principles to all the rest, to some indeed, such as are more universal, but to others, such as are more particular. Hence, Socrates, in the Theætetus, mingling the jocose with the serious, compares the sciences which reside in us to doves: but he says they fly away, some in flocks, but others separate from one another. For such, indeed, as are more common and more capacious, comprehend in themselves many such as are more particular: but such as being distributed into forms, touch things subject to knowledge, are distant from one another, and can by no means be copulated together, since they are excited by different primary principles. One science, therefore, precedes all sciences and disciplines, since it knows the common properties which pervade through all the genera of beings, and supplies principles to all the mathematical sciences. And thus far our doctrine concerning dialectic[73] is terminated.

CHAP. V.