Photograph by Stephen Cribb, Southsea.

H.M.S. “WEAR.”

Photograph supplied by Palmer Shipbuilding Co., Ltd.

The announcement that the Admiralty favoured a speed of 33 knots evoked a chorus of disapproval. The Admiralty was supposed to have become obsessed by a craze for speed, to which everything must be sacrificed. All the old objections which had done duty at every increase of speed for years, and had been proved to be ill-founded, were revived, brought up to date, and launched against the Admiralty proposals. Again it was contended that a vessel travelling at that speed must inevitably founder if she should unfortunately bury her nose in a wave, and that the violent alternation of stresses as she travelled in a rough sea must cause her to break her back or buckle her decks without more ado. But the Mohawk, in 1907, came and conquered, much to the delight of everyone except those whose prophecies, as usual, were upset, and not only attained a speed of 34½ knots, but accomplished it in fairly rough weather in the wintry month of November of that year, and proved her soundness of construction and the possession of excellent sea-going qualities. An objection, which at first was supposed to be serious, was that to attain such a high speed her consumption of fuel would be so great that her radius of action would be greatly restricted. The contract under which the Mohawk was built by White, at Cowes, contained the stipulation that she should maintain a speed of 33 knots for six hours; at her trials, however, she averaged 34½ knots. Her consumption of oil fuel on this occasion was 64¼ tons, and as she is fitted to carry 148 tons, her radius of action at this enormous speed is 435 knots, and at 14 knots, which is known now as the cruising speed, she is estimated to cover 1,500 miles. Though 270 feet in length she is only 25 feet beam. She is constructed entirely of high tensile steel, the tensile strength ranging from 37 to 40 tons per square inch. Her three screw propellers are driven by turbine engines, and it has been found that with oil fuel she can attain her full speed in less time than would be possible were her furnaces fed with coal. Her armament consists of three 12-pounder rifled quick-firing breech-loading guns, two of which are forward and one aft, and two revolving tubes on deck for firing 18-inch torpedoes. Another of the class, Thornycroft’s Tartar, made 35.678 knots on the measured course, an almost equal speed on the six-hours’ run, while the highest speed she showed was 37.037 knots, thereby establishing a world’s record.

The same year saw the launch of the Swift, at Birkenhead. She has a displacement of 1,800 tons, and is the largest and fastest destroyer yet constructed. She is of a special type, a class by herself; her turbine engines of 30,000 indicated h.p. give her a speed of 36 knots, and for armament she carries four 4-inch guns and two torpedo tubes. Not far behind her in dimensions and speed is the Japanese Kaifu, but a Russian destroyer building at the Putilov yard in Russia is to be of 1,300 tons, but with engines as powerful as those of the Swift, is expected to prove fully as fast, if not faster.

The ocean-going destroyers, built in 1909, have displacements varying from 880 to 1,000 tons, and a speed of from 33 to 34 knots, a typical example being the Maori, built by Denny at Dumbarton. The new naval force for the Australian Commonwealth includes some very fine destroyers, among which may be mentioned the Yarra.

A tendency has been manifest in some of the later destroyers to provide better all-round fighting and sea-going qualities than were possible in vessels like the Swift, in which speed was all-important. The Beagle and Acorn are considered to be good representatives of the compromise.

The bunker capacity of destroyers being very limited, and their consumption of fuel large, it is evident that the scope of their operations must be considerably restricted. At no time is it possible for them to be more than fourteen days away from their coal base. In case of necessity they might coal at sea, if coal storeships accompany the fleet to which they are attached. The adoption of oil fuel, which can be stored in the double bottom, may increase the range at which these vessels can operate, and if, as is expected in the near future, destroyers driven by internal combustion engines are adopted, their range of action will prove more extensive still.