In both cases there is a noticeable decrease in nitrogen, and a corresponding increase in the content of carbon. Evidently, then, this cleavage of the albumin-molecule into the anti-group on the one hand, and into bodies of the hemi-group on the other, is accompanied by chemical changes of such magnitude that their imprint is plainly visible upon the resultant products; changes which certainly are far removed from those common to polymerization.

This proneness of proteid matter to undergo hydration and subsequent cleavage is further testified to by the readiness with which even such a resistant body as coagulated egg-albumin breaks down under the simple influence of superheated water at 130° to 150° C. Many observations are recorded bearing on this tendency of proteid matter, but few observers have carried their experiments to a satisfactory conclusion. A recent study of this question in my own laboratory, has given some very interesting results.[88] Thus, coagulated egg-albumin placed in sealed tubes with a little distilled water and exposed to a temperature of 150° C. for three to four hours, rapidly dissolves, leaving, however, an appreciable residue. The solution reacts alkaline, there is a separation of sulphur, and in the fluid is to be found not albumin, but two distinct albumose-like bodies, together with some true peptone, and a small amount of leucin, tyrosin, and presumably other bodies.[89] The albumose-like bodies are in many ways quite peculiar. In some respects they resemble the albumoses formed in ordinary digestion; but in others they show peculiarities which render them quite unique, so that they merit the specific name of atmidalbumoses, as suggested by Neumeister. What, however, I wish to call attention to here is the composition of these albumoses. Prepared from coagulated egg-albumin by the simple action of heat and water, they show a deviation from the composition of the mother-proteid, which plainly implies changes of no slight degree. This is clearly apparent from the following table:

Coagulated
egg-albumin.
Atmidalbumose
precipitated
by NaCl.
Atmidalbumose
precipitated by
NaCl + acid.
Deutero-
atmidalbumose.
Antialbumid.
C52.3355.1355.0451.9953.79
H 6.98 6.93 6.89 6.60 7.08
N15.8414.2814.1713.2514.55
S 1.81 1.66.... 0.98....
O23.0422.00....27.18....

Here we see that two of these primary albumoses formed by the action of superheated water, like the previously described antialbumid, show a loss of nitrogen with a marked increase in the content of carbon. Evidently, they are related to the antialbumid formed by the action of dilute acid. They are, however, soluble in water, and in many ways differ from true antialbumid, but there is evidently an inner relationship. The so-called deutero­atmidalbumose shows a still more noticeable falling off in nitrogen and sulphur, while the content of carbon is more closely allied to that of the mother-proteid. The albumose precipitable by sodium chloride, although different from an albumid, evidently comes from the anti-group and is a cleavage product which in turn may undergo further hydration and splitting by continued treatment. The so-called deutero-body, on the other hand, may well be a representative of the hemi-group.[90]

It is not my purpose here to enter into details connected with the action of superheated water on proteids. Such a course would take us too far from our present subject, but I do wish to emphasize the fact that even the most resistant of proteids has an innate tendency to undergo hydration and cleavage, and that even simple heating with water alone, at a temperature slightly above 100° C., is sufficient to induce at least partial solution of the proteid. Further, this solvent action in the case of water and dilute acids, at least, is certainly associated with marked chemical changes. It is not mere solution, it is not simply the formation of one soluble body, but solution of the proteid is accompanied by the appearance of a row of new products, in which the terminal bodies are crystalline substances of simple composition. Further, this conclusion does not rest upon the results obtained from a single proteid, for I have at various times studied also the primary products formed in the cleavage of casein, elastin, zein, and other proteids by the action of hot dilute acid, and in all cases have obtained evidence of the formation of several proteose-like bodies, as well as of true peptones.

By the action of more powerful hydrolytic agents, such as boiling hydrochloric acid to which a little stannous chloride has been added to prevent oxidation, the proteid molecule may be completely broken down into simple decomposition products, of which leucin, tyrosin, aspartic acid, glutamic acid, glucoprotein, lysin, and lysatinin are typical examples.[91] In other words, by this and other methods of treatment, which we cannot take time to consider, we can easily break down the albumin-molecule completely into bodies which, as we shall see later on, are typical end-products of trypsin-proteolysis, and which are far removed from the original proteid. But, as we have seen, even the primary bodies formed in the less profound hydrolysis induced by superheated water, do not show the composition of the mother-proteid. Hydration and cleavage leave their marks upon the products, and thereby we know that solution of the proteid is the result of something more than a mere rearrangement of the atoms in the molecule.

Further, we are to remember that boiling dilute acid and superheated water tend to produce a cleavage along specific lines; viz., a cleavage into the anti- and hemi-groups of the molecule, and as represen­ta­tives of these groups we may, in the hydration of every native proteid, look for two distinct rows of closely related substances.