Concerning this point, Lea[194] has recently reported some experimental evidence obtained by a comparative study of artificial pancreatic digestion as carried on in a flask, with similar digestions carried on in parchment dialyzer tubes, the latter so arranged that the diffusible products of proteolysis can pass from the tube into the surrounding fluid. As Lea justly says, this whole question of the formation of leucin by proteolysis is a very important one, since it bears closely upon one of the possible methods by which urea may be quickly formed from proteid food. Thus, we have evidence that when leucin is administered to mammals a portion of its nitrogen, at least, quickly reappears as urea and uric acid in the urine.[195] Further, there is a certain amount of evidence that this transformation takes place in the liver, viz., in the organ where leucin absorbed from the intestine would naturally be first carried.[196]

Obviously, the main point to be gained in a dialyzer-experiment is the removal of the soluble products of digestion as soon as they are formed; but peptones are not rapidly diffusible, and the process, as noted under the head of gastric digestion, cannot be considered in any sense as yielding the same results as might be obtained in the living intestine. Still, the method offers a closer approach to the natural process than when carried on in a flask, and the results are of interest. Thus, Lea finds in the first place that in a dialyzer-digestion the proteid is more quickly dissolved, and that there is far less tendency for the formation of an insoluble antialbumid with its natural resistance to the ferment. Still, it is to be noticed that the amount of this antialbumid-residue formed by trypsin-proteolysis in a flask is mainly dependent upon the strength of the ferment solution, and the character of the proteid undergoing digestion. If the latter is in a fairly digestible form, and the enzyme solution reasonably active, then even the flask-digestion may show almost no residue of antialbumid. Yet there is at least a shade of difference in the two cases, which may be expressed by the statement that trypsin-proteolysis, as carried on in a dialyzer-tube, is prone to give less insoluble antialbumid than a corresponding digestion in a flask. Further, the amount of leucin and tyrosin formed in a flask-digestion is always greater than in a dialyzer-digestion, other conditions being equal. Naturally, these results help us very little in drawing any conclusions regarding the extent to which leucin and tyrosin may be formed in the intestine. They merely emphasize the fact that the withdrawal of a certain quantity of hemipeptone from the digestive mixture tends to reduce by so much the yield of leucin and tyrosin. It is hardly to be assumed, however, that the rate of withdrawal of peptone from the intestine can keep pace with its formation, especially when it is remembered that the proteid matter coming into the small intestine, owing to its preliminary treatment in the stomach, is in a comparatively digestible condition. Further, the pancreatic juice is a remarkably active fluid, and proteolysis under its influence must make rapid strides. I can easily conceive that proteolysis by trypsin, when carried on in a flask, may lead to the formation of much larger amounts of leucin and tyrosin, and of other bodies as well, than occurs in the natural process; but there is certainly no ground for the belief that leucin and tyrosin are wholly wanting in pancreatic proteolysis as it occurs in the intestine.

With a view to obtaining some positive evidence on this point I have tried a few experiments on animals, the results of which have convinced me that, in the case of dogs, at least, both leucin and tyrosin may be formed in natural pancreatic digestion in considerable quantities. Thus, in one experiment a good sized dog, kept without food for two days, was fed four hundred grammes of chopped lean beef at 8 A.M. At 2 P.M. the animal was killed and the intestine ligatured close to the pylorus. The lower end of the small intestine was likewise ligatured. The portion inclosed between the two ligatures was then removed from the body, and the contents of the intestine pressed and rinsed out with distilled water. In the stomach, was found a small amount of semi-digested matter weighing about fifty grammes. The material obtained from the intestine was strained through mull, the fluid rendered faintly acid with acetic acid, and heated to boiling. The clear filtrate from this precipitate was concentrated to a very small volume, and while still hot precipitated with a large amount of ninety-five per cent. alcohol. A small gummy precipitate resulted, which was thoroughly extracted with boiling alcohol and the washings added to the alcoholic filtrate. The precipitate contained some deutero­proteose and a small amount of true peptone.

The alcoholic fluids were evaporated to a small volume and set aside in a cool place. As a result, quite a separation of leucin and tyrosin occurred in the characteristic crystalline forms. No attempt was made to effect a quantitative separation of the two bodies, but the mixed precipitate finally obtained weighed, after re­crystal­liza­tion, over three-fourths of a gramme. Leucin was plainly in excess, but considerable tyrosin must have been left in the alcoholic precipitate, owing to its greater insolubility in this menstruum. This experiment is almost a counterpart of one reported by Lea,[197] and like his indicates that both leucin and tyrosin may be formed in not inconsiderable quantities by pancreatic proteolysis as it occurs in the intestine. This being so, one is naturally called on to explain “the physiological significance of a process which at first sight appears to result in a degradation of the potential energy of proteids, under conditions such that the energy set free can be of little use to the economy.”[198] But it is quite possible, as Lea has suggested, that these amido-bodies have an important part to play in some of the synthetical or other processes of the organism, and that their formation is consequently necessary for the well-being of the body. Whether this is so or not, we may well consider the formation of these amido-acids in pancreatic proteolysis as a means of quickly ridding the body of any excess of ingested proteid food, with the least possible expenditure of energy on the part of the system. This has always seemed to me the probable purpose of the profound changes which the pancreatic ferment is capable of inducing.

The primary object of both gastric and pancreatic proteolysis is to render the proteid foods more easily available for the needs of the economy, viz., to aid in their absorption and consequent distribution to the master tissues and organs of the body. This is doubtless fully accomplished by the formation of the so-called primary and secondary products of proteolysis, i. e., the proteoses and peptones which are, comparatively, not far removed from the mother-proteid, except in solubility and other minor points. In the ferment trypsin, however, we have a special agent endowed with the power of carrying on the hydrolytic cleavage to a point where exceedingly simple bodies result, and through whose agency any excess of proteid material in the intestinal canal may be quickly broken down into a row of products easily removed from the system. It is to be remembered, however, that the very nature of the proteid molecule precludes the possibility of anything like a complete decomposition into crystalline or other simple products. Full fifty per cent. of the peptone formed must be antipeptone, which cannot be further changed by trypsin under any circumstances, so that, whether the amount of proteid in the intestine be large or small, or whether it is exposed for a longer or shorter period to trypsin-proteolysis, there will always be a fairly large amount for absorption. This may well be considered as one of the reasons for the peculiar structure of the proteid molecule, the anti-group being always available for the direct nutrition of the body, while the represen­ta­tives of the hemi-group, especially when proteid is present in excess, can be quickly and readily broken down into simple products. In other words, the direct formation of these simple bodies in the intestine furnishes a short path to urea, thus leading to the rapid elimination of any excess of proteid material.

We may well attribute to the epithelial cells of the intestine the power, under normal circumstances, of regulating and controlling, even though indirectly, the order of events in the intestine. Just as the so-called secreting cells of the tubuli uriniferi may lose for a time their power to pick out from the blood material destined for the urine, being clogged or exhausted by continued effort, so the epithelial cells of the intestine, which play such an important part in the absorption of proteid matters from the alimentary tract, may, in the presence of an excess of proteid matter, become temporarily exhausted, and, refusing passage to the proteoses and peptone formed by proteolysis, render possible further hydrolytic cleavage into leucin, tyrosin, lysatin, etc.; bodies which, by one method or another, can be readily transformed into urea. At the same time, as already stated, it seems more than probable that some formation of these amido-acids always occurs in the intestine, and that these bodies have some specific part to play in the normal processes of metabolism going on in the body. The more one studies the processes of nutrition in general, the more one is impressed with the view that there is a purpose in everything, and that the formation of even such bodies as leucin and tyrosin may be connected with hidden processes, the key to which has not yet been found. We see an analogous case, perhaps, in the action of the inorganic salts in nutrition, some of which, at least, neither undergo change themselves nor induce changes in other substances, and yet we know their presence is indispensable for keeping up the normal rhythm of the nutritional processes of the body.