In apparent harmony with this view is the fact that the leucocytes in the adenoid tissue of the intestine are greatly increased in number during digestion.[222] Furthermore, it is a well authenticated fact that the proteoses or peptones found in pus are contained in the pus-cells themselves, and not in the fluid in which the corpuscles float.[223] In support of the first statement, Pohl,[224] in his recent study of the absorption and assimilation of food-stuffs, has emphasized the marked increase in the number of white blood-corpuscles in the circulating blood after the ingestion of proteid foods, especially such as meat, Witte’s peptone, and gelatin-peptone. It is to be noted further that the increase is most marked at about the third hour after the taking of food, viz., at a time when digestive proteolysis would naturally be at its height. Moreover, the maximal increase, according to Pohl’s data, is astounding, amounting as it does in many cases to a hundred per cent. Thus, in one instance, in the case of a dog, the number of white blood-corpuscles per cubic millimetre of blood was 8,689; yet two hours after the feeding of 100 grammes of meat the number increased to 17,296 per cubic millimetre, followed six hours after by a return to the original figure.

This indicates the general tenor of Pohl’s results, which have been taken, by some physiologists at least, as confirmatory of Hofmeister’s views; the interpretation naturally being that digestive proteolysis in the alimentary tract is accompanied by a rapid production of new leucocytes in the lymph-spaces surrounding the intestine, and followed by a rapid transference of the corpuscles from their point of origin to the circulating blood, from which they gradually disappear as their material is made use of in the different parts of the body. In harmony with this view, Pohl finds that there is a much larger number of leucocytes in the blood and lymph flowing from the intestine of an animal in full digestion, than in the arterial blood coming to the intestinal tract. Further, when due consideration is given to all the circumstances attending the circulation of the blood through the abdominal organs, in connection with the great increase in the number of leucocytes during digestive proteolysis, it seems not unreasonable to suppose that some proteid matter might be transferred from the intestine to the blood during the digestive period of six or eight hours. Moreover, if Pohl’s views are correct, we see that a portion, at least, of the proteid food-product may be transformed into organized material in the body of the lymph-cell prior to its passage into the blood, thus harmonizing with the statement already made regarding the utter lack of proteoses and peptones in the blood and lymph. This obviously means an upbuilding of the ordinary products of digestive proteolysis into the living protoplasm of the leucocytes in the intestinal walls, implying, however, that the transformation is accomplished solely by the leucocytes themselves, and not by the epithelial cells of the intestine.

I have given this brief summary of Pohl’s work because it is so closely in harmony with the original views of Hofmeister, and because it offers an easy explanation of one possible way in which some of the products of digestion might perhaps pass from the intestine into the blood. I am inclined to believe, however, that the so-called digestive leucocytosis, which unquestionably does exist, is not a direct result of digestive proteolysis in general, but rather an indirect result, coming from the stimulating action of the nuclein, contained especially in animal cells. Thus, it is a significant fact, as Pohl himself reports, that wheat-bread, with its fairly large amount of proteid matter, and which is fully capable of nourishing the animal body, fails to exert any influence on the number of leucocytes in the blood. Yet we know that the gluten and other proteids of wheat-flour are converted by digestive proteolysis into proteoses and peptones, with the same general properties as like products of animal origin.

In this connection we may note the experiments of Horbaczewski,[225] which show that nuclein administered to a healthy man will give rise to a very marked increase in the number of leucocytes in the blood. Thus, a few grammes of nuclein may produce as striking a condition of leucocytosis as a large amount of proteid food, due no doubt to proliferation of the lymphoid elements of all the lymphatic tissues of the body. Horbaczewski has reported that the mere injection of 0.25 gramme of nuclein, in the case of rabbits, will cause marked enlargement of the spleen, with striking karyokinetic changes. Hence, it may be assumed that whenever nuclein is set free in the body, leucocytosis may result, provided the nuclein passes into the circulation and is not decomposed immediately after its liberation.

These facts, it appears to me, offer a more consistent line of explanation of digestive leucocytosis than that advanced by Pohl. All animal foods, especially meat of various kinds and milk, contain considerable nuclein or nucleo-albumins, which, by the action of the gastric juice, are liberated and partially digested, but the nuclein is certainly not dissolved. Nucleins, however, are soluble in weak alkaline fluids, and when exposed to the action of the alkaline pancreatic juice in the intestine, are in great part dissolved. Thus, Popoff[226] has reported that different varieties of nuclein behave somewhat differently in the intestine, according to their origin. In young and tender tissues, solution of the contained nuclein through the alkaline fluids of the intestinal canal is fairly complete, while the older products are somewhat more resistant both to the pancreatic juice and to the putrefactive processes common to the intestine. However, experiments show that the greater portion of the nuclein of ordinary proteid foods is dissolved in the intestine, and absorbed as such in a practically unaltered form. Consequently, passing into the adenoid tissue surrounding the intestine, it has a marked stimulating action on the lymphoid elements, accompanied by a noticeable increase in the number of leucocytes, which are perhaps produced at the expense of a portion of the proteoses and peptones formed during proteolysis.

Thus, my interpretation of these results would lead me simply to the admission that, possibly, a portion of the products of proteolysis might pass from the intestine into the blood-current indirectly, through the bodies of the leucocytes formed in the adenoid tissue of the intestine. But even admitting this, we lack positive proof of any direct transformation of proteoses and peptones into the organized material of the white blood-corpuscles, for it may be that the above products are first transformed through other agencies into serum-albumin, or other like proteids. There are, indeed, many facts which are plainly opposed to any marked absorption and transformation of peptones by the leucocytes of the intestinal mucous membrane. Thus, Heidenhain[227] has severely criticised the theory on the ground that there is very little increase in the flow of lymph from the thoracic duct during absorption, and further that the small percentage of proteid matter in the chyle (about 2.0 per cent.) cannot account for the large amount of proteid absorbed. Further, the objection is made that the leucocytes present in the intestinal mucosa, though numerous, are wholly inadequate to assimilate any large proportion of the ingested proteid food.

Still greater stress, however, may be laid upon the fact that experimental evidence points to the conclusion that lymph-cells cannot assimilate either peptones or proteoses. Thus, quite recently, Shore[228] has studied the results following the introduction of a mixture of such products into the lymphatic system by secretion, by absorption, and by direct injection into a lymphatic vessel. Preliminary experiments on dogs showed that when peptone is introduced into the bile-duct it gradually appears in the lymph of the thoracic duct, consequently this method can be made use of as a means of ascertaining the fate of peptone so absorbed into the lymphatic system. The results obtained, using the ammonium sulphate method for the isolation of the peptone, showed that when peptone is injected into the bile-duct with sufficient force to overcome the low pressure under which bile is secreted, there is an increase in the rate of flow of lymph from the thoracic duct. Further, while peptone is somewhat slow in appearing in the lymph it eventually makes its appearance there, in from sixty to one hundred and forty minutes after its injection into the bile-duct. A certain amount of peptone naturally passes into the blood, but is then rapidly excreted through the urine. When, however, the renal vessels are ligatured, peptone still rapidly disappears from the blood, but then passes into the lymph, and under such circumstances can be detected in the lymph as early as thirty-eight minutes after its injection into the bile-duct. These results, therefore, do not accord with the view that peptones suffer marked transformation by contact with lymph-cells, for when only three-fourths of a gramme of peptone is introduced into the bile-duct, unaltered peptone can be detected in the lymph of the thoracic duct seventy to ninety minutes after its injection.

With reference to the fate of peptone when it passes by secretion into the lymphatic system, it will be remembered that Heidenhain[229] has shown that the injection of peptone into the blood may be followed by a large increase in the rate of flow of lymph. Further, the amount of solids in the lymph, especially of proteids, is considerably increased. From these and other facts, Heidenhain is led to the view that the formation of lymph is a true secretion from the blood-vessels. Shore finds that when small amounts of peptone are slowly injected into the blood, there is generally only a slight acceleration in the flow of lymph, but the clotting power of the lymph is affected in a remarkable manner. Thus, about twenty minutes after the commencement of the injection the lymph loses entirely its power of coagulating. This continues for about twenty minutes, and then, in spite of the fact that the injection is being continued, the lymph rapidly regains its power of clotting, and finally coagulates quicker and firmer than before. This peculiar action of peptone on the clotting power of lymph may frequently be observed, even when the amount of peptone present is too small to be detected with certainty by chemical methods. Thus, when peptone in small quantity is injected very slowly into the blood, the greater part of it escapes through the urine, but a small fraction, sometimes too small to actually detect, passes into the lymph and shows its presence by its peculiar influence on the clotting of the fluid.

When, on the other hand, peptone is injected rapidly into the blood, 0.3 to 0.6 gramme per kilo. during two to ten minutes, it may disappear completely from the blood in five to ten minutes after the end of the injection. In such a case, the fall of blood-pressure induced leads to more or less arrest of the renal secretion, peptone appearing in large amount in the lymph; but there is no indication of any alteration of the peptone by the lymph, or its contained leucocytes. Thus, when there is no chance for the peptone to escape from the body, as on ligation of the renal vessels, the peptone injected into the blood is rapidly thrown into the lymph, and from the lymph in the tissues of the body it is gradually carried to the thoracic duct, and then again passes into the blood; all of which shows that there is little or no transformation of the peptone by the leucocytes of the lymphatic system.