Before completing the tests of these drains and fittings, I suggested that all faults and errors found in connection with the branch drains should at once be remedied, and each drain be connected to the sewer with a trap, or else it would be of little use to improve the ventilation of the sewers. I was quietly informed that this could not for one moment be entertained, as where these evils were the worst was on property belonging to members of the Local Board, and any attempt to pass a resolution to compel this to be done would be futile, and the necessity of doing it attributed to the zeal of local sanitarians.

I am glad to say that cases like this are exceptional, but there are many towns where similar evils will remain until an epidemic breaks out and the authorities are compelled to have them remedied. The amount of air passing through the sewer is no indication of the ventilation or the amount of air that is being admitted, or the quantity of gas charged with poisons that is given off. I have tested the gas in a sewer and at the ventilating shafts, and have repeatedly found the gas in the sewer flowing at a high velocity whilst the air in the open ventilating shaft was perfectly stagnant.

I have not been able to make experiments to know how long gas will remain in a sewer, but from observations of its gravity and working in different localities I believe that the poisons from sewage matter are retained in the lower strata of the air of sewers in some cases for months, and when open gratings are only 50 yards apart. The quantity of air taken in at the gratings at this time is a little more than the displacement caused by the water, and when gases are released to any extent it is through atmospheric influences.

If you measure the amount of air going in and out of say twenty open gratings in the same locality, the small quantity would astonish those who had not previously tested it.

Repeatedly has it been written and said that if you put a shaft or grating at the top of a hill, or sewer, it will take off the impure gas of a district, but I have had men working for days at the top of a sewer 150 and 200 feet higher than the lowest grating, and no trap intervening, yet during this time not a particle of gas left the drain at this the highest opening, but at times a good inlet current would take place down the drain.

I find that one of the most fatal mistakes to make in sewer ventilation is to introduce a large quantity of fresh air into a sewer at a high temperature. An atmosphere at from 90° to 100° thrown into a sewer will rapidly decompose sewage matter and produce results exactly opposite to that intended. It is when the hot atmosphere of a summer’s day comes in contact with the sewage in the sewers that the worst poisons are generated and given off, and the gases which come from the gratings are the most noxious. This rapid decomposition is more particularly felt in the suburbs, where the drains are of stoneware and the sewage has to be carried through them for a considerable distance.

Common sense teaches us that all matter of a nature like that passing through sewers will decompose more rapidly and reach a higher state of putrefaction in an atmosphere of a high temperature, even above ground, than in any other condition. Experiments confirm this to be the case whether it be applied to matter in sewers, vaults, or tanks. The best experiments that I have made in sewer ventilation is in keeping the temperature as low as possible, admitting into the sewer sufficient air to prevent any action taking place on the water-seal, and what gas came out of the sewer by compression to purify it at the gratings, extracting the poisons that it had taken up from the sewage.

Many gases which are found in sewers have an affinity to water, and will make their way to the water-seal and become absorbed in the water of the trap to some extent, but not to the extent many persons imagine, or to become detrimental to health.

When a disinfectant having a greater attractive power than the water is used in connection with the ventilation, this attraction to the water-seal will not take place.

If necessary, in hot weather or in large sewers, or those of an easy gradient, cold air of a very low temperature could be introduced, which would prevent decomposition taking place to any extent during the transit of the sewage. If the whole area of a system of sewers was charged four times a day with air at a temperature of 30° we should have no complaints of sewer gas.