The self-discharge of water from a lifeboat is not so easy to explain. It will be the more readily comprehended if the reader understands, and will bear in remembrance, the physical fact that water will, and must, find its level. That is—no portion of water, small or great, in tub, pond, or sea, can for a moment remain above its flat and level surface, except when forced into motion, or commotion. Left to itself it infallibly flattens out, becomes calm, lies still in the lowest attainable position—in other words, finds its level. Bearing this in mind, let us look again at Figure 3.
The dotted double line about the middle of the boat, extending from stem to stern, represents the floor of the boat, on which the men’s feet rest when standing or sitting in it. It also represents, or very nearly so, the waterline outside, that is, the depth to which the boat will sink when afloat, manned and loaded. Therefore, the boat’s floor and the ocean surface are on the same level. Observe that! The space between the floor and the keel is filled up with cork or other ballast. Now, there are six large holes in the boat’s floor—each hole six inches in diameter—into which are fitted six metal tubes, which pass down by the side of the cork ballast, and right through the bottom of the boat itself; thus making six large openings into the sea.
“But hallo!” you exclaim, “won’t the water from below rush up through these holes and fill the boat?”
It will indeed rush up into these holes, but it will not fill the boat because it will have found its level—the level of ocean—on reaching the floor. Well, besides having reached its level, the water in the tubes has reached six valves, which will open downwards to let water out, but which won’t open upwards to let it in. Now, suppose a huge billow topples into the boat and fills it quite full, is it not obvious that all the water in the boat stands above the ocean’s level—being above the boat’s floor? Like a wise element, it immediately seeks its own level by the only mode of egress—the discharging tubes; and when it has found its level, it has also found the floor of the boat. In other words, it is all gone! moreover, it rushes out so violently that a lifeboat, filled to overflowing, frees itself, as I have already said, in less than one minute!
The buoyancy, therefore, of a lifeboat is not affected for more than a few seconds by the tons of water which occasionally and frequently break into her. To prove this, let me refer you again to the account of the Constance, given by its gallant coxswain, as recorded in the third chapter. He speaks of the lifeboat being “buried,” “sunk” by the wave that burst over the bow of the Stanley, and “immediately,” he adds, “the men made a grasp for the spare oars!” There is no such remark as “when we recovered ourselves,” etcetera. The sinking and leaping to the surface were evidently the work of a few seconds; and this is indeed the case, for when the force that sinks a lifeboat is removed, she rises that instant to the surface like a cork, and when she tumbles over she recovers herself with the agility of an acrobat!
The transporting-carriage is a most essential part of a lifeboat establishment, because wrecks frequently take place at some distance from a station, and prompt assistance is of the utmost importance in all cases of rescue. It is drawn by horses, and, with its exceedingly broad and strong wheels, can be dragged over any kind of road or across soft sand. It is always backed into the surf so deep that the boat may be launched from it, with her crew seated, and the oars out, ready to pull with might and main the instant the plunge is made. These first strokes of a lifeboat’s crew are of immense importance. Want of union or energy on the part of steersman or crew at this critical point may be fatal. The boat must be made to cut the breakers end-on, so as to prevent her turning broadside on and being rolled back on the beach. Even after these initial strokes have been made successfully, there still remains the possibility of an unusually monstrous wave hurling the boat back end over end.
The boat resting on its carriage on the sands (Figure 1) shows the relative position of the two. It will be seen, from that position, that a very slight tip will suffice to cause the bow of the boat to drop towards the sea. As its keel rests on rollers, comparatively little force is required to launch it. Such force is applied by means of ropes attached to the stern, passing through pulleys at the outer end of the carriage, so that people on shore haul the ropes inland in order to force the boat off its carriage seaward.
Once the boat has got fairly over the surf and out upon the wild sea, her progress is comparatively safe, simple tugging against wind and sea being all that has to be done until the wreck is reached, where dangers of another kind await her.
I have now shown that the great qualities of our lifeboat are—buoyancy, or a tendency not to sink; self-righting power, or inability to remain upside down; self-emptying power, or a capacity to discharge any water that may get into it; and stability, or a tendency not to upset. The last quality I shall refer to, though by no means the least, is strength.
From what has been already written about lifeboats being hurled against wrecks and rocks, it must be evident that the strength of ordinary boats would not suffice.