He should have known automatically that it was building toward Fermium 256. It was the most logical, easiest, and simplest way for a D-H reactor to go off the deep end.

A Ditmars-Horst reactor took advantage of the fact that any number can be expressed as the sum of powers of two—and the number of nucleons in an atomic nucleus was no exception to that mathematical rule.

Building atoms by adding nucleons wasn't as simple as putting marbles in a bag because of the energy differential, but the energy derived from the fusion of the elements lighter than Iron 56 could be compensated for by using it to pack the nuclei heavier than that. The trick was to find a chain of reactions that gave the least necessary energy transfer. The method by which the reactions were carried out might have driven a mid-Twentieth Century physicist a trifle ga-ga, but most of the reactions themselves would have been recognizable.

There were several possible reactions which Ferguson and Metty could have used to produce Hg-203, but de Hooch was fairly sure he knew which one it was. The five-branch, double-alpha-addition scheme was the one that was easiest to use—and it was the only one that started the damnable doubling chain reaction, where the nuclear weights went up exponentially under the influence of the peculiar conditions within the reactor. 2-4-8-16-32-64-128-256 ... Hydrogen 2 and Helium 4 were stable. So were Oxygen 16 and Sulfur 32. The reaction encountered a sticky spot at Beryllium 8, which is highly unstable, with a half life of ten to the minus sixteenth seconds, spontaneously fissioning back into two Helium 4 nuclei. Past Sulfur 32, there was a lot of positron emission as the nuclei fought to increase the number of neutrons to maintain a stable balance. Germanium 64 is not at all stable, and neither is Neodymium 128, but the instability can be corrected by positive beta emission. When two nuclei of the resulting Xenon 128 are forced together, the positron emission begins long before the coalescence is complete, resulting in Fermium 256.

But not even a Ditmars-Horst reactor can stand the next step, because matter itself won't stand it—not even in a D-H reactor. The trouble is that a D-H reactor tries. Mathematically, it was assumed that the resulting nucleus did exist—for an infinitesimal instant of time. Literally, mathematically, infinitesimal—so close to zero that it would be utterly impossible to measure it. Someone had dubbed the hypothetical stuff Instantanium 512.

Whether Instantanium 512 had any real existence is an argument for philosophers only. The results, in any case, were catastrophic. The whole conglomeration came apart in a grand splatter of neutrons, protons, negatrons, positrons, electrons, neutrinos—a whole slew of Greek-lettered mesons of various charges and masses, and a fine collection of strange and ultrastrange particles. Energy? Just oodles and gobs.

Peter de Hooch had heard about the results. He had no desire to experience them first hand. Fortunately, the reaction that led up to them took time. It could be stopped at any time up to the Fm-256 stage. According to the instruments, that wouldn't be for another six hours yet, so there was nothing at all to worry about. Even after that it could be stopped, provided one had a way to get rid of the violently fissioning fermium.

"Connections O.K.?" Willows asked. His voice came over the earphones inside the ponderous helmet of the radiation suit.

"Fine," said de Hooch. He adjusted the double periscope so that his vision was clear. "Perfect."

He tested the controls, moving his arms and legs to see if the suit responded. The suit was so heavy that, without powered joints, controlled by servomechanisms, he would have been unable to move, even under Lunar gravity. With the power on, though, it was no harder than walking underwater in a diving suit. "All's well, Puss," he said.