The colouring-matters derived from these two hydrocarbons are far from being exhausted. During the oxidation of aniline for the production of mauve—which colouring-matter, it may be mentioned, is no longer made—a red compound is formed as a by-product. This was isolated by Perkin in 1861, and studied scientifically by Hofmann and Geyger, who established its composition in 1872, the dye being at that time manufactured under the name of “saffranine.” It appears to have been first introduced about 1868. The conditions of formation of this dye were at first imperfectly understood, but the problem was attacked by chemists and technologists, and the first point of importance resulting from their work was that saffranine was derived from one of the toluidines present in the commercial aniline. To record the various steps in this chapter of industrial chemistry would take us beyond the scope of the present work. In addition to the chemists named, Caro, Bindschedler, and others contributed to the technology, while the scientific side of the matter was first taken up by Nietzki in 1877, by Otto Witt in 1878, and by Bernthsen in 1886. It is to the work of these chemists, and especially to that of Witt, that we owe our present knowledge of the constitution of this and allied colouring-matters. Space will not admit of our traversing the ground, although to chemists it is a line of investigation full of interest; it will be sufficient to say that by 1886 these investigators had accomplished for these colouring-matters what the Fischers had done for the rosaniline group—they established their constitution, and showed that they were derivatives of diphenylamine, containing two nitrogen atoms joined together in a particular way. The parent-substance from which these compounds are derived is known at the present time as “azine” (French, azote = nitrogen), and the dyes belong accordingly to the azine group. The first coal-tar colouring-matter, Perkin’s mauve, is a member of this class.
The azine dyes are basic, and mostly of a red or pink shade; they are somewhat fugitive when exposed to light, but possess a certain value on account of their affinity for cotton, and the readiness with which they can be used in admixture with other colouring-matters. Some of the best known are made by oxidizing certain derivatives of aniline or toluidine, in the presence of these or analogous bases. To make this intelligible a little more chemistry is necessary. Aniline is a derivative of benzene in which one atom of hydrogen is replaced by the residue of ammonia. Ammonia is composed of one atom of nitrogen and three atoms of hydrogen; benzene is composed of six atoms of carbon and six of hydrogen. If one atom of hydrogen is supposed to be withdrawn from ammonia, there remains a residue called the amido-group, and if we imagine this group to be substituted for one of the hydrogen atoms in benzene, we have an amido-derivative, i.e. amidobenzene or aniline. Similarly, the toluidines are amidotoluenes. If two hydrogen atoms in benzene or toluene are replaced by two amido-groups, we have diamidobenzenes and diamidotoluenes, which are strongly basic substances, capable of existing in several isomeric modifications. Certain of these diamido-compounds when oxidized in the presence of a further quantity of aniline, toluidine, and such amido-compounds, give rise to unstable blue products, which readily become transformed into red dyes of the azine group.
Some azine dyes are produced by another method, which is instructive because it brings us into contact with a derivative of dimethylaniline which figures largely in the coal-tar colour industry. By the action of nitrous acid on this base, there is produced a compound known as nitrosodimethylaniline, which was discovered by Baeyer and Caro in 1874, and which contains the residue of nitrous acid in place of one atom of hydrogen. The residue of nitric acid which replaces hydrogen in benzene is the nitro-group, and the compound is nitrobenzene. The analogy with nitrous acid will therefore be sufficiently understood—the residue of this acid is the nitroso-group, and compounds containing this group are nitroso-derivatives. In 1879, Otto Witt found that the nitroso-group in nitrosodimethylaniline acted as an oxidizing group, and enabled this compound to act upon certain diamido-derivatives of benzene and toluene, with the formation of unstable blue compounds, which on heating the solution changed into red colouring-matters of the azine group. This process soon bore fruit industrially, and azines of a red, violet, and blue shade were introduced under the names of neutral red, violet, and blue, Basle blue, &c., some of these surviving at the present time.
We have now to turn to another chapter in the history of dimethylaniline. In 1876, Lauth discovered a new colour test for one of the diamidobenzenes. By heating this base with sulphur, and oxidizing the product, a violet colouring-matter was formed, and the same compound was produced by oxidizing the base in an aqueous solution in the presence of sulphuretted hydrogen. Lauth’s violet was never manufactured in quantity because the yield is small; but in the hands of Dr. Caro the work of Lauth bore fruit in another direction. Instead of using the diamidobenzene, Caro used its dimethyl-derivative, and by this means obtained a splendid blue dye, which was introduced under the name of “methylene blue.” Here again we find scientific research reacting on technology. A few words of chemical explanation will make this manufacture intelligible. By the action of reducing agents on nitro and nitroso-compounds, the nitro and nitroso-group become converted into the amido-group. Thus when nitrobenzene is reduced by iron and an acid we get aniline; similarly when nitrosodimethylaniline is reduced by zinc and an acid we get amidodimethylaniline, and this is the base used in the preparation of methylene blue. By oxidizing this base in the presence of sulphuretted hydrogen, the colouring-matter is formed. Other methods of arriving at the same result were discovered and patented in due course, but the various processes cannot be discussed here.
Lauth’s violet and methylene blue became the subjects of scientific investigation in 1879 by Koch, and in 1883 a series of brilliant researches were commenced by Bernthsen which extended over several years, and which established the constitution of these compounds. It was shown that they are derivatives of diphenylamine containing sulphur as an essential constituent. The parent-compound is diphenylamine in which sulphur replaces hydrogen, and is therefore known as thiodiphenylamine. It can be prepared by heating diphenylamine with sulphur, and is sometimes called thiazine, because it is somewhat analogous in type to azine. We must therefore credit dimethylaniline with being the industrial generator of the thiazines. The blue is largely used for cotton dyeing, producing on this fibre when properly mordanted an indigo shade. By the action of nitrous acid the blue is converted into a green known as “methylene green.”
Although the scope of this work admits of our dealing with only a few of the more important groups of colouring-matters, it will already be evident that the chemist has turned benzene and toluene to good account. But great as is the demand for these hydrocarbons for the foregoing purposes, there are other branches of the coal-tar industry which are dependent upon them. It will serve as an answer to those who are continually raising the cry of brilliancy as an offence to æsthetic taste if we consider in the next place a most valuable and important black obtained from aniline. All chemists who studied the action of oxidizing agents, such as chromic acid, on aniline, from Runge in 1834 to Perkin in 1856, observed the formation of greenish or bluish-black compounds. After many attempts to utilize these as colouring-matters, success was achieved by John Lightfoot of Accrington near Manchester in 1863. By using as an oxidizing agent a mixture of potassium chlorate and a copper salt, Lightfoot devised a method for printing and dyeing cotton fabrics, the use of which spread rapidly and created an increased demand for the hydrochloride of aniline, this salt being now manufactured in enormous quantities under the technical designation of “aniline salt.” Lightfoot’s process was improved for printing purposes by Lauth in 1864, and many different oxidizing mixtures have been subsequently introduced, notably the salts of vanadium, which are far more effective than the salts of copper, and which were first employed by Lightfoot in 1872. In 1875-76 Coquillion and Goppelsröder showed that aniline black is produced when an electric current is made to decompose a solution of an aniline salt, the oxidizing agent here being the nascent oxygen resulting from the electrolysis. In these days when the generation of electricity is so economically effected, this process may become more generally used, and the coal-tar industry may thus be brought into relationship with another branch of applied science. Aniline black is seldom used as a direct colouring-matter; it is generally produced in the fibre by printing on the mixture of aniline salt and oxidizing compounds thickened with starch, &c., and then allowing the oxidation to take place spontaneously in a moist and slightly heated atmosphere. By a similar process, using a dye-bath containing the aniline salt and oxidizing mixture, cotton fibre is easily dyed. The black cannot be used for silk or wool, as the oxidizing materials attack these fibres, but for cotton dyeing and calico printing this colouring-matter has come seriously into competition with the black dyes obtained from logwood and madder. The use of aniline for this purpose, first rendered practicable by Lightfoot, is among the most important of the many wonderful applications of coal-tar products in the tinctorial industry.
The year 1863 witnessed the introduction of the first of a new series of colouring-matters which have had an enormous influence both on the art of the dyer as well as in the utilization of tar-products which were formerly of but little value. We can consider the history of some of these colours now, because the earliest of them was produced from aniline. The formation of a yellow compound when nitrous acid acts upon aniline was observed by several chemists prior to the date mentioned. In 1863 the firm of Simpson, Maule and Nicholson manufactured a yellow dye by passing nitrous gas into a solution of aniline in alcohol, and this had a limited application under the name of “aniline yellow.” Soon afterwards, viz. in 1866, the firm of Roberts, Dale & Co. of Manchester introduced a brown dye under the name of “Manchester brown”—this compound, which was discovered by Dr. Martius in 1865, having been produced by the action of nitrous acid on one of the diamidobenzenes. Ten years later Caro and Witt discovered an orange colouring-matter belonging to the same class, and the latter introduced the compound into commerce as “chrysoïdine.” These three compounds are basic, and the first of them is no longer used as a direct dye because it is fugitive. Chrysoïdine is still used to a large extent, and the brown—now known as “Bismarck brown”—is one of the staple products of the colour manufacturer at the present time. From this fragment of technological history let us now turn to chemical science.
The chemist whose name will always be associated with the compounds of this group is the late Dr. Peter Griess of Burton-on-Trent. He commenced his study of the action of nitrous acid on organic bases in 1858, and from that time till the period of his death in 1888, he was constantly contributing to our knowledge of the resulting compounds. In 1866, he and Dr. Martius established the composition of aniline yellow, and the following year Caro and Griess did the same thing for the Manchester brown. In 1877 Hofmann and Witt established the constitution of chrysoïdine, the final outcome of all this work being to show that the three colouring-matters belonged to the same group. The further development of these discoveries has been one of the most prolific sources of new colouring-matters. A brief summary of our present position with respect to this group must now be attempted.
When nitrous acid acts upon an amido-derivative of a benzenoid hydrocarbon in the presence of a mineral acid, there is formed a compound in which the amido-group is replaced by a pair of nitrogen atoms joined together in a certain way, which is different to the mode of combination in the azines. This pair of nitrogen atoms is combined on the one hand with the hydrocarbon residue, and on the other with the residue of the mineral acid. The resulting compound is very unstable; its solution decomposes very readily, and generally has to be kept cool by ice. Freezing machines turning out large quantities of ice are kept constantly at work in factories where these produces are made. The latter are known as “diazo-compounds”—Griess’s compounds par excellence—and they are prepared on a large scale by dissolving a salt of the amido-base, generally the hydrochloride, in water with ice, and adding sodium nitrite. The result is a diazo-salt; aniline, for example, giving diazobenzene chloride, and toluidine diazotoluene chloride. Similarly all amido-derivatives of a benzenoid character can be “diazotised.” The importance of this discovery will be seen more fully in the next chapter. At present we are more especially concerned with aniline.
The extreme instability of the diazo-salts enables them to combine with the greatest ease with amido-derivatives and with other compounds. The very property which in the early days rendered their investigation so difficult, and which taxed the ingenuity of chemists to the utmost, has now placed these compounds in the front rank as colour generators. When a diazo-salt acts on an amido-derivative there is formed a compound which is more or less unstable, but which readily undergoes transformation under suitable conditions into a stable substance in which two hydrocarbon residues are joined together by the pair of nitrogen atoms. These products are dye-stuffs, known as “azo-colours,” and aniline yellow, Bismarck brown, and chrysoïdine are the oldest known technical compounds belonging to the group. The parent substance is “azobenzene,” and these three colouring-matters are mono-, di- and triamido-azobenzene respectively.