If instead of heating coal in contact with air and allowing it to burn, we heat it in a closed vessel, such as a retort, it undergoes decomposition with the formation of various gaseous, liquid, and solid products. This process of heating an organic compound in a closed vessel without access of air and collecting the products, is called destructive distillation. The tobacco-pipe experiment of our boyhood is our first practical introduction to the destructive distillation of coal. We put some powdered coal into the bowl of the pipe, plaster up the opening with clay and then insert the bowl in a fire, allowing the stem to project from between the bars of the grate. In a few minutes a stream of gas issues from the orifice of the stem; on applying a light it burns with a luminous flame, and we have made coal-gas on a small scale.

In the destructive distillation of organic substances, such as wood or coal, there are always produced four things—gas, watery liquid, and viscous products known as tar, while a residue of coke or charcoal is left in the retort. This is a very old observation, and was made so long ago that it becomes interesting as a point in the history of applied science to know who first submitted coal to destructive distillation. According to Dr. Gustav Schultz, we must credit a German with this observation, which was made towards the end of the seventeenth century (about 1680) by a chemist named Johann Joachim Becher. The experiment is described in such a quaint manner that the exact words of the author are worthy of being reproduced, and the passage is here given as translated by Dr. Lunge in his work on Coal Tar and Ammonia

“In Holland they have peat, and in England pit-coals; neither of them is very good for burning, be it in rooms or for smelting. But I have found a way, not merely to burn both kinds into good coal (coke) which not any more smokes nor stinks, but with their flame to smelt equally well as with wood, so that a foot of such coal makes flames 10 feet long. That I have demonstrated with pit-coal at the Hague, and here in England at Mr. Boyles’, also at Windsor on the large scale. In this connection it is also noteworthy that, equally as the Swedes make their tar from firwood, I have here in England made from pit-coal a sort of tar which is equal to the Swedish in every way, and for some operations is even superior to it. I have made proof of it on wood and on ropes, and the proof has been found right, so that even the king has seen a specimen of it, which is a great thing in England, and the coal from which the tar has been taken out is better for use than before.”

This enterprising chemist, moreover, brought his results to a practical issue, for he secured a patent, in conjunction with Henry Serle, in 1681, for “a new way of making pitch and tarre out of pit-coale, never before found out or used by any other.”

No less interesting is the work of our own clergy during the last century, when many eminent divines appear to have devoted their leisure to experimental science. Thus, about the year 1688 the Rev. John Clayton, D.D., Dean of Kildare, went to examine a ditch two miles from Wigan in Lancashire, the water in which had been stated to “burn like brandy” when a flame was applied to it. The Dean ultimately traced the phenomenon to an escape of inflammable gas from an underlying coal seam, and he followed up the matter experimentally by studying the destructive distillation of Wigan coal in retorts. The results were communicated to the Hon. Robert Boyle, but were not published till after the death of the latter, and long after the death of the author. The following account is taken from the abridged edition of the Philosophical Transactions (1739):—

“At first there came over only phlegm, afterwards a black oil, and then also a spirit arose, which he could noways condense, but it forced the luting, or broke the glasses. Once, when it had forced the lute, coming close to it to try to repair it, he observed that the spirit which issued out caught fire at the flame of the candle, and continued burning with violence as it issued out in a stream, which he blew out and lighted again alternately for several times. He then tried to save some of this spirit. Taking a turbinated receiver, and putting a candle to the pipe of the receiver while the spirit rose, he observed that it caught flame, and continued burning at the end of the pipe, though you could not discern what fed the flame. He then blew it out, and lighted it again several times; after which he fixed a bladder, flatted and void of air, to the pipe of the receiver. The oil and phlegm descended into the receiver, but the spirit, still ascending, blew up the bladder. He then filled a good many bladders with it, and might have filled an inconceivable number more; for the spirit continued to rise for several hours, and filled the bladders almost as fast as a man could have blown them with his mouth; and yet the quantity of coals he distilled was inconsiderable.

“He kept this spirit in the bladders a considerable time, and endeavoured several ways to condense it, but in vain. And when he wished to amuse his friends, he would take one of the bladders, and pricking a hole with a pin, and compressing gently the bladder near the flame of a candle till it once took fire, it would then continue flaming till all the spirit was compressed out of the bladder.”[1]

The Rev. Stephen Hales, D.D., Rector of Farringdon, Hants, was the author of a book entitled Statical Essays, containing Vegetable Staticks, printed in 1726-27, and of which the third edition bears the date 1738. At p. [182] of this work, after a previous description of the destructive distillation of all kinds of substances in iron or other retorts, he says—

“By the same means also I found plenty of air [gas] might be obtained from minerals. Half a cubick inch, or 158 grains of Newcastle coal, yielded in distillation 180 cubick inches of air [gas], which arose very fast from the coal, especially while the yellowish fumes ascended.”

Still later, viz. about 1767, we have the Rev. R. Watson, D.D., Regius Professor of Divinity in the University of Cambridge, and Bishop of Llandaff, interesting himself in chemistry. He wrote a series of Chemical Essays, one of which is entitled, Of Pit Coal, and in this he describes the production from coal (by destructive distillation) of illuminating gas, ammonia-water, tar, and coke. He further compares the relative quantities of the different products from various kinds of coal, but he appears to have been chiefly interested in the tar, and disregarded the gas and other products. Not the least interesting part of his book is the preface, in which he apologizes for his pursuits in the following words—