"There would be similar differences in the duration of the heavy vibrations; in Japan they would come at the rate of about one a second: here, at the rate of about one in twenty or forty seconds. It is the time, then, occupied by the preliminary tremors that tells us the distance of the earthquake. Earthquakes in Borneo, for instance, give preliminary tremors occupying about forty-one minutes, in Japan about half an hour, in the earthquake region east of Newfoundland about eight minutes, in the disturbed region of the West Indies about nineteen or twenty minutes, and so on. Thus the earthquake is located with absolute precision."
Most earthquakes occur in the deep bed of the ocean, in the vast valleys between ocean mountains, and the dangerous localities are now almost as well known as the principal mountain ranges of North America. There is one of these valleys, or ocean holes, off the west coast of South America from Ecuador down; there is one in the mid-Atlantic, about the equator, between twenty degrees and forty degrees west longitude: there is one at the Grecian end of the Mediterranean; one in the Bay of Bengal, and one bordering the Alps; there is the famous "Tuscarora Deep," from the Philippine Islands down to Java; and there is the North Atlantic region, about 300 miles east of Newfoundland. In the "Tuscarora Deep" the slope increases 1,000 fathoms in twenty-five miles, until it reaches a depth of 4,000 fathoms.
Pieces of a Submarine Cable Picked Up in the Gulf of Mexico in 1888.
The kinks are caused by seismic disturbances, and they show how much distortion a cable can suffer and still remain in good electrical condition, as this was found to be.
And this brings us to the consideration of one of the greatest practical advantages of the seismograph—in the exact location of cable breaks. Indeed, a large proportion of these breaks are the result of earthquakes. In a recent report Professor Milne says that there are now about twenty-seven breaks a year for 10,000 miles of cable in active use. Most of these are very costly, fifteen breaks in the Atlantic cable between 1884 and 1894 having cost the companies $3,000,000, to say nothing of loss of time. And twice it has happened in Australia (in 1880 and 1888) that the whole island has been thrown into excitement and alarm, the reserves being called out, and other measures taken, because the sudden breaking of cable connections with the outside world has led to the belief that military operations against the country were preparing by some foreign power. A Milne pendulum at Sydney or Adelaide would have made it plain in a moment that the whole trouble was due to a submarine earthquake occurring at such a time and such a place. As it was, Australia had to wait in a fever of suspense (in one case there was a delay of nineteen days) until steamers arriving brought assurances that neither Russia nor any other possibly unfriendly power had begun hostilities by tearing up the cables.
There have been submarine earthquakes in the Tuscarora, like that of June 15, 1896, that have shaken the earth from pole to pole; and more than once different cables from Java have been broken simultaneously, as in 1890, when the three cables to Australia snapped in a moment. And the great majority of breaks in the North Atlantic cables have occurred in the Newfoundland hollow, where there are two slopes, one dropping from 708 to 2,400 fathoms in a distance of sixty miles, and the other from 275 to 1,946 fathoms within thirty miles. On October 4, 1884, three cables, lying about ten miles apart, broke simultaneously at the spot. The significance of such breaks is greater when the fact is borne in mind that cables frequently lie uninjured for many years on the great level plains of the ocean bed, where seismic disturbances are infrequent.
The two chief causes of submarine earthquakes are landslides, where enormous masses of earth plunge from a higher to a lower level, and in so doing crush down upon the cable, and "faults," that is, subsidences of great areas, which occur on land as well as at the bottom of the sea, and which in the latter case may drag down imbedded cables with them.
It is in establishing the place and times of these breaks that Professor Milne's instruments have their greatest practical value; scientifically no one can yet calculate their value.