It was at this time that Professor Nobbe took up the work with vigour. If these nodules were produced by bacteria, he argued that the bacteria must be present in the soil; and if they were not present, would it not be possible to supply them by artificial means? In other words, if soil, say worn-out farm-soil or, indeed, pure sand like that of the sea-shore could thus be inoculated, as a physician inoculates a guinea-pig with diphtheria germs, would not beans and peas planted there form nodules and draw their nourishment from the air? It was a somewhat startling idea, but all radically new ideas are startling; and, after thinking it over, Professor Nobbe began, in 1888, a series of most remarkable experiments, having as their purpose the discovery of a practical method of soil inoculation. He gathered the nodule-covered roots of beans and peas, dried and crushed them, and made an extract of them in water. Then he prepared a gelatine solution with a little sugar, asparagine, and other materials, and added the nodule-extract. In this medium colonies of bacteria at once began to grow—bacteria of many kinds. Professor Nobbe separated the Radiocola—which are oblong in shape—and made what is known as a "clear culture," that is, a culture in gelatine, consisting of billions of these particular germs, and no others. When he had succeeded in producing these clear cultures he was ready for his actual experiments in growing plants. He took a quantity of pure sand, and, in order to be sure that it contained no nitrogen or bacteria in any form, he heated it at a high temperature three different times for six hours, thereby completely sterilising it. This sand he placed in three jars. To each of these he added a small quantity of mineral food—the required phosphorus, potassium, iron, sulphur, and so on. To the first he supplied no nitrogen at all in any form; the second he fertilised with saltpetre, which is largely composed of nitrogen in a form in which plants may readily absorb it through their roots; the third of the jars he inoculated with some of his bacteria culture. Then he planted beans in all three jars, and awaited the results, as may be imagined, somewhat anxiously. Perfectly pure sterilised water was supplied to each jar in equal amounts and the seeds sprouted, and for a week the young shoots in the three jars were almost identical in appearance. But soon after that there was a gradual but striking change. The beans in the first jar, having no nitrogen and no inoculation, turned pale and refused to grow, finally dying down completely, starved for want of nitrogenous food, exactly as a man would starve for the lack of the same kind of nourishment. The beans in the second jar, with the fertilised soil, grew about as they would in the garden, all of the nourishment having been artificially supplied. But the third jar, which had been jealously watched, showed really a miracle of growth. It must be remembered that the soil in this jar was as absolutely free of nitrogen as the soil in the first jar, and yet the beans flourished greatly, and when some of the plants were analysed they were found to be rich in nitrogen. Nodules had formed on the roots of the beans in the third or inoculated jar only, thereby proving beyond the hope of the experimenter that soil inoculation was a possibility, at least in the laboratory.

With this favourable beginning Professor Nobbe went forward with his experiments with renewed vigour. He tried inoculating the soil for peas, clover, lupin, vetch, acacia, robinia, and so on, and in every case the roots formed nodules, and although there was absolutely no nitrogen in the soil, the plants invariably flourished. Then Professor Nobbe tried great numbers of difficult test experiments, such as inoculating the soil with clover bacteria and then planting it with beans or peas, or vice versa, to see whether the bacteria from the nodules of any one leguminous plant could be used for all or any of the others. He also tried successive cultures; that is, bean bacteria for beans for several years, to see if better results could be obtained by continued use. Even an outline description of all the experiments which Professor Nobbe made in the course of these investigations would fill a small volume, and it will be best to set down here only his general conclusions.

Trees Growing in Water at Professor Nobbe's Laboratory.

These wonderful nitrogen-absorbing bacteria do not appear in all soil, although they are very widely distributed. So far as known they form nodules only on the roots of a few species of plants. In their original form in the soil they are neutral—that is, not especially adapted to beans, or peas, or any one particular kind of crop. But if clover, for instance, is planted, they straightway form nodules and become especially adapted to the clover plant, so that, as every farmer knows, the second crop of clover on worn-out land is much better than the first. And, curiously enough, when once the bacteria have become thoroughly adapted to one of the crops, say beans, they will not affect peas or clover, or only feebly.

Another strange feature of the life of these little creatures, which has a marvellous suggestion of intelligence, is their activities in various kinds of soil. When the ground is very rich—that is, when it contains plenty of nitrogenous matter—they are what Professor Nobbe calls "lazy." They do not readily form nodules on the roots of the plants, seeming almost to know that there is no necessity for it. But when once the nitrogenous matter in the soil begins to fail, then they work more sharply, and when it has gone altogether they are at the very height of activity. Consequently, unless the soil is really worn out, or very poor to begin with, there is no use in inoculating it—it would be like "taking owls to Athens," as Professor Nobbe says.

Experimenting with Nitrogen in Professor Nobbe's Laboratory.